7 resultados para Dry matter production
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The aim of this study was to investigate the effect of a soy diet on the excretion of Brachyspira hyodysenteriae in five farms with subclinically infected pigs. The effects on general health, faecal consistency and dry matter were analysed. In total, 200 pigs of different ages (group 1 <100 days of age (n=120) and group 2 ≥100 days (n=80)) were randomly assigned to the control (C) and the treatment (T) groups. Group C received the farm's standard diet. In group T half of the daily feed ration was replaced by pure soy on two consecutive days. Faecal scores were used to determine faecal consistency and a microwave method to assess faecal dry matter content (FDMC). In age group 1, soy feeding resulted in a statistically significant decrease of the FDMC of 2.5 per cent compared with group C and in age group 2 in a significant increase of 2.2 per cent compared with group C at day 2. Overall seven (T: 5, C: 2) out of 597 faecal samples tested positive for B hyodysenteriae by PCR. In conclusion, a high soy diet applied over two days influenced the faecal consistency and the FDMC in growers, finishers and sows under field conditions. Further investigations with more sensitive diagnostic methods are needed to prove a potential influence of a high soy diet on the detection rate of B hyodysenteriae in subclinically infected herds.
Resumo:
As part of the ESA-funded MELiSSA program, the suitability, the growth and the development of four bread wheat cultivars were investigated in hydroponic culture with the aim to incorporate such a cultivation system in an Environmental Control and Life Support System (ECLSS). Wheat plants can fulfill three major functions in space: (a) fixation of CO2 and production of O2, (b) production of grains for human nutrition and (c) production of cleaned water after condensation of the water vapor released from the plants by transpiration. Four spring wheat cultivars (Aletsch, Fiorina, Greina and CH Rubli) were grown hydroponically and compared with respect to growth and grain maturation properties. The height of the plants, the culture duration from germination to harvest, the quantity of water used, the number of fertile and non-fertile tillers as well as the quantity and quality of the grains harvested were considered. Mature grains could be harvested after around 160 days depending on the varieties. It became evident that the nutrient supply is crucial in this context and strongly affects leaf senescence and grain maturation. After a first experiment, the culture conditions were improved for the second experiment (stepwise decrease of EC after flowering, pH adjusted twice a week, less plants per m2) leading to a more favorable harvest (higher grain yield and harvest index). Considerably less green tillers without mature grains were present at harvest time in experiment 2 than in experiment 1. The harvest index for dry matter (including roots) ranged from 0.13 to 0.35 in experiment 1 and from 0.23 to 0.41 in experiment 2 with modified culture conditions. The thousand-grain weight for the four varieties ranged from 30.4 to 36.7 g in experiment 1 and from 33.2 to 39.1 g in experiment 2, while market samples were in the range of 39.4–46.9 g. Calcium levels in grains of the hydroponically grown wheat were similar to those from field-grown wheat, while potassium, magnesium, phosphorus, iron, zinc, copper, manganese and nickel levels tended to be higher in the grains of experimental plants. It remains a challenge for future experiments to further adapt the nutrient supply in order to improve senescence of vegetative plant parts, harvest index and the composition of bread wheat grains.
Resumo:
The objective of this study was to identify a suitable alternative to the current practice of complementing the feeding of milk by-products with straw. The influence of 5 different types of solid feeds on health and performance of Swiss veal calves was investigated in 2 production cycles of 200 veal calves each with a mean initial age of 40 days (d). The calves were housed in groups of 40 in stalls with outside pen. Liquid feeding consisted of a milk by-product combined with an additional skim milk powder ad libitum. Groups were assigned to 1 of the 5 following experimental solid feeds provided ad libitum: mix (composition: soy flakes, corn, barley, wheat, oat, barley middling, plant oil, molasses), whole plant corn pellets, corn silage, hay, and wheat straw as control. Daily dry matter intake per calf averaged 2.25 kg of the liquid food, 0.16 kg of straw, 0.33 kg of mix, 0.47 kg of corn silage, 0.38 kg of corn pellets, and 0.39 kg of hay. No significant differences (P > 0.05) among groups were found in calf losses that amounted to 4.8 % (68 % because of gastrointestinal disorders). Four percent of the calves were slaughtered prematurely. Daily doses of antibiotics were higher in the mix (36.9 d, P < 0.01) and in the corn silage groups (35 d, P < 0.01) compared to control. Compared to the 4 other groups, calves of the straw group showed the highest prevalence of abnormal ruminal content (73 %, P < 0.05), of abnormal ruminal papillae (42 %, P < 0.05), of abomasal fundic lesions (13.5 %, P < 0.1), and the lowest number of chewing movements per bolus (45, P < 0.05). The hemoglobin concentration averaged 85 g/l at the beginning and 99 g/l at the end of the fattening period with no significant differences among groups (P > 0.1). The duration of the fattening period averaged 114 d, slaughter age 157 d, and carcass weight 122 kg. The average daily weight gain (ADG) was highest in the control group straw (1.35 kg), and lowest in the hay group (1.22 kg, P < 0.01). The number of carcasses classified as C, H, and T (very high to medium quality) was lower in the hay group compared to straw (P < 0.01). No significant differences between groups were found in meat color (P > 0.1): 73 % of the carcasses were assessed as pale (267/364), 18 % as pink (66/364), and 9 % (31/364) as red. The results reveal that whole-plant corn pellets are most consistent with an optimal result combining the calves' health and fattening performance. Therefore, it can be recommended as an additional solid feed for veal calves under Swiss conditions.
Resumo:
Fat mobilization to meet energy requirements during early lactation is inevitable because of insufficient feed intake, but differs greatly among high-yielding dairy cows. Therefore, we studied milk production, feed intake, and body condition as well as metabolic and endocrine changes in high-yielding dairy cows to identify variable strategies in metabolic and endocrine adaptation to overcome postpartum metabolic load attributable to milk production. Cows used in this study varied in fat mobilization around calving, as classified by mean total liver fat concentrations (LFC) postpartum. German Holstein cows (n=27) were studied from dry off until d 63 postpartum in their third lactation. All cows were fed the same total mixed rations ad libitum during the dry period and lactation. Plasma concentrations of metabolites and hormones were measured in blood samples taken at d 56, 28, 15, and 5 before expected calving and at d 1 and once weekly up to d 63 postpartum. Liver biopsies were taken on d 56 and 15 before calving, and on d 1, 14, 28, and 49 postpartum to measure LFC and glycogen concentrations. Cows were grouped accordingly to mean total LFC on d 1, 14, and 28 in high, medium, and low fat-mobilizing cows. Mean LFC (±SEM) differed among groups and were 351±14, 250±10, and 159±9 mg/g of dry matter for high, medium, and low fat-mobilizing cows, respectively, whereas hepatic glycogen concentrations postpartum were the highest in low fat-mobilizing cows. Cows in the low group showed the highest dry matter intake and the least negative energy balance postpartum, but energy-corrected milk yield was similar among groups. The decrease in body weight postpartum was greatest in high fat-mobilizing cows, but the decrease in backfat thickness was greatest in medium fat-mobilizing cows. Plasma concentrations of nonesterified fatty acids and β-hydroxybutyrate were highest around calving in high fat-mobilizing cows. Plasma triglycerides were highest in the medium group and plasma cholesterol concentrations were lowest in the high group at calving. During early lactation, the decrease in plasma glucose concentrations was greatest in the high group, and plasma insulin concentrations postpartum were highest in the low group. The revised quantitative insulin sensitivity check index values decreased during the transition period and postpartum, and were highest in the medium group. Plasma cortisol concentrations during the transition period and postpartum period and plasma leptin concentrations were highest in the medium group. In conclusion, cows adapted differently to the metabolic load and used variable strategies for homeorhetic regulation of milk production. Differences in fat mobilization were part of these strategies and contributed to the individual adaptation of energy metabolism to milk production.
Resumo:
Insufficient feed intake during early lactation results in elevated body fat mobilization to meet energy demands for milk production. Hepatic energy metabolism is involved by increasing endogenous glucose production and hepatic glucose output for milk synthesis and by adaptation of postcalving fuel oxidation. Given that cows differ in their degree of fat mobilization around parturition, indicated by variable total liver fat concentration (LFC), the study investigated the influence of peripartum fat mobilization on hepatic gene expression involved in gluconeogenesis, fatty acid oxidation, ketogenesis, and cholesterol synthesis, as well as transcriptional factors referring to energy metabolism. German Holstein cows were grouped according to mean total LFC on d 1, 14, and 28 after parturition as low [<200mg of total fat/g of dry matter (DM); n=10], medium (200-300 mg of total fat/g of DM; n=10), and high (>300 mg of total fat/g of DM; n=7), indicating fat mobilization during early lactation. Cows were fed total mixed rations ad libitum and held under equal conditions. Liver biopsies were taken at d 56 and 15 before and d 1, 14, 28, and 49 after parturition to measure mRNA abundances of pyruvate carboxylase (PC); phosphoenolpyruvate carboxykinase; glucose-6-phosphatase; propionyl-coenzyme A (CoA) carboxylase α; carnitine palmitoyl-transferase 1A (CPT1A); acyl-CoA synthetase, long chain 1 (ASCL1); acyl-CoA dehydrogenase, very long chain; 3-hydroxy-3-methylglutaryl-CoA synthase 1 and 2; sterol regulatory element-binding factor 1; and peroxisome proliferator-activated factor α. Total LFC postpartum differed greatly among cows, and the mRNA abundance of most enzymes and transcription factors changed with time during the experimental period. Abundance of PC mRNA increased at parturition to a greater extent in high- and medium-LFC groups than in the low-LFC group. Significant LFC × time interactions for ACSL1 and CPT1A during the experimental period indicated variable gene expression depending on LFC after parturition. Correlations between hepatic gene expression and performance data and plasma concentrations of metabolites and hormones showed time-specific relations during the transition period. Elevated body fat mobilization during early lactation affected gene expression involved in gluconeogenesis to a greater extent than gene expression involved in lipid metabolism, indicating the dependence of hepatic glucose metabolism on hepatic lipid status and fat mobilization during early lactation.
Resumo:
The challenge for sustainable organic dairy farming is identification of cows that are well adapted to forage-based production systems. Therefore, the aim of this study was to compare the grazing behaviour, physical activity and metabolic profile of two different Holstein strains kept in an organic grazing system without concentrate supplementation. Twelve Swiss (HCH ; 566 kg body weight (BW) and 12 New Zealand Holstein-Friesian (HNZ ; 530 kg BW) cows in mid-lactation were kept in a rotational grazing system. After an adaptation period, the milk yield, nutrient intake, physical activity and grazing behaviour were recorded for each cow for 7 days. On three consecutive days, blood was sampled at 07:00, 12:00 and 17:00 h from each cow by jugular vein puncture. Data were analysed using linear mixed models. No differences were found in milk yield, but milk fat (3.69 vs. 4.05%, P = 0.05) and milk protein percentage (2.92 vs. 3.20%, P < 0.01) were lower in HCH than in HNZ cows. Herbage intake did not differ between strains, but organic matter digestibility was greater (P = 0.01) in HCH compared to HNZ cows. The HCH cows spent less (P = 0.04) time ruminating (439 vs. 469 min/day) and had a lower (P = 0.02) number of ruminating boli when compared to the HNZ cows. The time spent eating and physical activity did not differ between strains. Concentrations of IGF-1 and T3 were lower (P ≤ 0.05) in HCH than HNZ cows. In conclusion, HCH cows were not able to increase dry matter intake in order to express their full genetic potential for milk production when kept in an organic grazing system without concentrate supplementation. On the other hand, HNZ cows seem to compensate for the reduced nutrient availability better than HCH cows but could not use that advantage for increased production efficiency
Resumo:
An experiment was conducted to determine the effect of grazing versus zero-grazing on energy expenditure (EE), feeding behaviour and physical activity in dairy cows at different stages of lactation. Fourteen Holstein cows were subjected to two treatments in a repeated crossover design with three experimental series (S1, S2, and S3) reflecting increased days in milk (DIM). At the beginning of each series, cows were on average at 38, 94 and 171 (standard deviation (SD) 10.8) DIM, respectively. Each series consisted of two periods containing a 7-d adaptation and a 7-d collection period each. Cows either grazed on pasture for 16–18.5 h per day or were kept in a freestall barn and had ad libitum access to herbage harvested from the same paddock. Herbage intake was estimated using the double alkane technique. On each day of the collection period, EE of one cow in the barn and of one cow on pasture was determined for 6 h by using the 13C bicarbonate dilution technique, with blood sample collection done either manually in the barn or using an automatic sampling system on pasture. Furthermore, during each collection period physical activity and feeding behaviour of cows were recorded over 3 d using pedometers and behaviour recorders. Milk yield decreased with increasing DIM (P<0.001) but was similar with both treatments. Herbage intake was lower (P<0.01) for grazing cows (16.8 kg dry matter (DM)/d) compared to zero-grazing cows (18.9 kg DM/d). The lowest (P<0.001) intake was observed in S1 and similar intakes were observed in S2 and S3. Within the 6-h measurement period, grazing cows expended 19% more (P<0.001) energy (319 versus 269 kJ/kg metabolic body size (BW0.75)) than zero-grazing cows and differences in EE did not change with increasing DIM. Grazing cows spent proportionally more (P<0.001) time walking and less time standing (P<0.001) and lying (P<0.05) than zero-grazing cows. The proportion of time spent eating was greater (P<0.001) and that of time spent ruminating was lower (P<0.05) for grazing cows compared to zero-grazing cows. In conclusion, lower feed intake along with the unchanged milk production indicates that grazing cows mobilized body reserves to cover additional energy requirements which were at least partly caused by more physical activity. However, changes in cows׳ behaviour between the considered time points during lactation were too small so that differences in EE remained similar between treatments with increasing DIM.