2 resultados para Dry mass - Production
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In the southern part of Korup National Park, Cameroon, the mast fruiting tree Microberlinia bisulcata occurs as a codominant in groves of ectomycorrhizal Caesalpiniaceae within a mosaic of otherwise species-rich lowland rain forest. To estimate the amount of carbon and nutrients invested in reproduction during a mast fruiting event, and the consequential seed and seedling survival, three related field studies were made in 1995. These provided a complete seed and seedling budget for the cohort. Seed production was estimated by counting woody pods on the forest floor. Trees produced on average 26,000 (range 0-92,000) seeds/tree, with a dry mass of 16.6 kg/tree. Seeds were contained in woody pods of mass 307 kg/tree. Dry mass production of pods and seeds was 1034 kg ha(-1), equivalent to over half (55%) of annual leaf litterfall for this species, and contained 13% of the nitrogen and 21% of the phosphorus in annual leaf litterfall. Seed and young-seedling mortality was investigated with open quadrats and cages to exclude vertebrate predators, at two distances from the parent tree. The proportion of seeds on the forest floor which disappeared in the first 6 wk after dispersal was 84%, of which 26.5% was due to likely vertebrate removal, 36% to rotting, and 21.5% to other causes. Vertebrate predation was greater close to the stem than 5 m beyond the crown (41 vs 12% of seeds disappearing) where the seed shadow was less dense. Previous studies have demonstrated an association between mast years at Korup and high dry-season radiation before flowering, and have shown lower leaf-litterfall phosphorus concentrations following mast fruiting. The emerging hypothesis is that mast fruiting is primarily imposed by energy limitation for fruit production, but phosphorus supply and vertebrate predation are regulating factors. Recording the survival of naturally-regenerating M. bisulcata seedlings (6-wk stage) showed that 21% of seedlings survived to 31 mo. A simple three-stage recruitment model was constructed. Mortality rates were initially high and peaked again in each of the next two dry seasons, with smaller peaks in the two intervening wet seasons, these latter coinciding with annual troughs in radiation. The very poor recruitment of M. bisulcata trees in Korup, demonstrated in previous investigations, appears not to be due to a limitation in seed or young-seedling supply, but rather by factors operating at the established-seedling stage.
Resumo:
Ab initio calculations of Afρ are presented using Mie scattering theory and a Direct Simulation Monte Carlo (DSMC) dust outflow model in support of the Rosetta mission and its target 67P/Churyumov-Gerasimenko (CG). These calculations are performed for particle sizes ranging from 0.010 μm to 1.0 cm. The present status of our knowledge of various differential particle size distributions is reviewed and a variety of particle size distributions is used to explore their effect on Afρ , and the dust mass production View the MathML sourcem˙. A new simple two parameter particle size distribution that curtails the effect of particles below 1 μm is developed. The contributions of all particle sizes are summed to get a resulting overall Afρ. The resultant Afρ could not easily be predicted a priori and turned out to be considerably more constraining regarding the mass loss rate than expected. It is found that a proper calculation of Afρ combined with a good Afρ measurement can constrain the dust/gas ratio in the coma of comets as well as other methods presently available. Phase curves of Afρ versus scattering angle are calculated and produce good agreement with observational data. The major conclusions of our calculations are: – The original definition of A in Afρ is problematical and Afρ should be: qsca(n,λ)×p(g)×f×ρqsca(n,λ)×p(g)×f×ρ. Nevertheless, we keep the present nomenclature of Afρ as a measured quantity for an ensemble of coma particles.– The ratio between Afρ and the dust mass loss rate View the MathML sourcem˙ is dominated by the particle size distribution. – For most particle size distributions presently in use, small particles in the range from 0.10 to 1.0 μm contribute a large fraction to Afρ. – Simplifying the calculation of Afρ by considering only large particles and approximating qsca does not represent a realistic model. Mie scattering theory or if necessary, more complex scattering calculations must be used. – For the commonly used particle size distribution, dn/da ∼ a−3.5 to a−4, there is a natural cut off in Afρ contribution for both small and large particles. – The scattering phase function must be taken into account for each particle size; otherwise the contribution of large particles can be over-estimated by a factor of 10. – Using an imaginary index of refraction of i = 0.10 does not produce sufficient backscattering to match observational data. – A mixture of dark particles with i ⩾ 0.10 and brighter silicate particles with i ⩽ 0.04 matches the observed phase curves quite well. – Using current observational constraints, we find the dust/gas mass-production ratio of CG at 1.3 AU is confined to a range of 0.03–0.5 with a reasonably likely value around 0.1.