30 resultados para Drug-excipient interaction

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The pre-treatment of tumour neovessels by low-level photodynamic therapy (PDT) improves the distribution of concomitantly administered systemic chemotherapy. The mechanism by which PDT permeabilizes the tumour vessel wall is only partially known. We have recently shown that leukocyte-endothelial cell interaction is essential for photodynamic drug delivery to normal tissue. The present study investigates whether PDT enhances drug delivery in malignant mesothelioma and whether it involves comparable mechanisms of actions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Resveratrol is a naturally occurring polyphenol that is often used as a food supplement. Many positive health effects, including cardio protection, tumor suppression, and immune modulation, are associated with the intake of resveratrol. Resveratrol is well tolerated in healthy subjects without any comedication. However, supplemental doses of resveratrol in the range of 1 g/day or above by far exceed the natural intake through food. Whether resveratrol-drug interactions can be harmful in patients taking additional medications remains unknown. Recent in vivo studies and clinical trials indicate a possible drug-drug interaction potential using high-dosage formulations. In this review, the known in vitro and in vivo effects of resveratrol on various cytochrome P450 (CYP) isoenzymes are summarized. They are discussed in relation to clinically relevant plasma concentrations in humans. We conclude that resveratrol may lead to interactions with various CYPs, especially when taken in high doses. Aside from systemic CYP inhibition, intestinal interactions must also be considered. They can potentially lead to reduced first-pass metabolism, resulting in higher systemic exposure to certain coadministrated CYP substrates. Therefore, patients who ingest high doses of this food supplement combined with additional medications may be at risk of experiencing clinically relevant drug-drug interactions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the context of drug hypersensitivity, our group has recently proposed a new model based on the structural features of drugs (pharmacological interaction with immune receptors; p-i concept) to explain their recognition by T cells. According to this concept, even chemically inert drugs can stimulate T cells because certain drugs interact in a direct way with T-cell receptors (TCR) and possibly major histocompatibility complex molecules without the need for metabolism and covalent binding to a carrier. In this study, we investigated whether mouse T-cell hybridomas transfected with drug-specific human TCR can be used as an alternative to drug-specific T-cell clones (TCC). Indeed, they behaved like TCC and, in accordance with the p-i concept, the TCR recognize their specific drugs in a direct, processing-independent, and dose-dependent way. The presence of antigen-presenting cells was a prerequisite for interleukin-2 production by the TCR-transfected cells. The analysis of cross-reactivity confirmed the fine specificity of the TCR and also showed that TCR transfectants might provide a tool to evaluate the potential of new drugs to cause hypersensitivity due to cross-reactivity. Recombining the alpha- and beta-chains of sulfanilamide- and quinolone-specific TCR abrogated drug reactivity, suggesting that both original alpha- and beta-chains were involved in drug binding. The TCR-transfected hybridoma system showed that the recognition of two important classes of drugs (sulfanilamides and quinolones) by TCR occurred according to the p-i concept and provides an interesting tool to study drug-TCR interactions and their biological consequences and to evaluate the cross-reactivity potential of new drugs of the same class.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Drugs are routinely combined in anesthesia and pain management to obtain an enhancement of the desired effects. However, a parallel enhancement of the undesired effects might take place as well, resulting in a limited therapeutic usefulness. Therefore, when addressing the question of optimal drug combinations, side effects must be taken into account. METHODS: By extension of a previously published interaction model, the authors propose a method to study drug interactions considering also their side effects. A general outcome parameter identified as patient's well-being is defined by superposition of positive and negative effects. Well-being response surfaces are computed and analyzed for varying drugs pharmacodynamics and interaction types. In particular, the existence of multiple maxima and of optimal drug combinations is investigated for the combination of two drugs. RESULTS: Both drug pharmacodynamics and interaction type affect the well-being surface and the deriving optimal combinations. The effect of the interaction parameters can be explained in terms of synergy and antagonism and remains unchanged for varying pharmacodynamics. For all simulations performed for the combination of two drugs, the presence of more than one maximum was never observed. CONCLUSIONS: The model is consistent with clinical knowledge and supports previously published experimental results on optimal drug combinations. This new framework improves understanding of the characteristics of drug combinations used in clinical practice and can be used in clinical research to identify optimal drug dosing.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Small chemicals like drugs tend to bind to proteins via noncovalent bonds, e.g. hydrogen bonds, salt bridges or electrostatic interactions. Some chemicals interact with other molecules than the actual target ligand, representing so-called 'off-target' activities of drugs. Such interactions are a main cause of adverse side effects to drugs and are normally classified as predictable type A reactions. Detailed analysis of drug-induced immune reactions revealed that off-target activities also affect immune receptors, such as highly polymorphic human leukocyte antigens (HLA) or T cell receptors (TCR). Such drug interactions with immune receptors may lead to T cell stimulation, resulting in clinical symptoms of delayed-type hypersensitivity. They are assigned the 'pharmacological interaction with immune receptors' (p-i) concept. Analysis of p-i has revealed that drugs bind preferentially or exclusively to distinct HLA molecules (p-i HLA) or to distinct TCR (p-i TCR). P-i reactions differ from 'conventional' off-target drug reactions as the outcome is not due to the effect on the drug-modified cells themselves, but is the consequence of reactive T cells. Hence, the complex and diverse clinical manifestations of delayed-type hypersensitivity are caused by the functional heterogeneity of T cells. In the abacavir model of p-i HLA, the drug binding to HLA may result in alteration of the presenting peptides. More importantly, the drug binding to HLA generates a drug-modified HLA, which stimulates T cells directly, like an allo-HLA. In the sulfamethoxazole model of p-i TCR, responsive T cells likely require costimulation for full T cell activation. These findings may explain the similarity of delayed-type hypersensitivity reactions to graft-versus-host disease, and how systemic viral infections increase the risk of delayed-type hypersensitivity reactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Immune reactions to drugs can cause a variety of diseases involving the skin, liver, kidney, lungs, and other organs. Beside immediate, IgE-mediated reactions of varying degrees (urticaria to anaphylactic shock), many drug hypersensitivity reactions appear delayed, namely hours to days after starting drug treatment, showing a variety of clinical manifestations from solely skin involvement to fulminant systemic diseases which may be fatal. Immunohistochemical and functional studies of drug-specific T cells in patients with delayed reactions confirmed a predominant role for T cells in the onset and maintenance of immune-mediated delayed drug hypersensitivity reactions (type IV reactions). In these reactions, drug-specific CD4+ and CD8+ T cells are stimulated by drugs through their T cell receptors (TCR). Drugs can stimulate T cells in two ways: they can act as haptens and bind covalently to larger protein structures (hapten-carrier model), inducing a specific immune response. In addition, they may accidentally bind in a labile, noncovalent way to a particular TCR of the whole TCR repertoire and possibly also major histocompatibility complex (MHC)-molecules - similar to their pharmacologic action. This seems to be sufficient to reactivate certain, probably in vivo preactivated T cells, if an additional interaction of the drug-stimulated TCR with MHC molecules occurs. The mechanism was named pharmacological interaction of a drug with (immune) receptor and thus termed the p-i concept. This new concept may explain the frequent skin symptoms in drug hypersensitivity to oral or parenteral drugs. Furthermore, the various clinical manifestations of T cell-mediated drug hypersensitivity may be explained by distinct T cell functions leading to different clinical phenotypes. These data allowed a subclassification of the delayed hypersensitivity reactions (type IV) into T cell reactions which, by releasing certain cytokines and chemokines, preferentially activate and recruit monocytes (type IVa), eosinophils (type IVb), or neutrophils (type IVd).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pulmonary route is very attractive for drug delivery by inhalation. In this regard, nanoparticulate drug delivery systems, designed as multifunctional engineered nanoparticles, are very promising since they combine several opportunities like a rather uniform distribution of drug dose among all ventilated alveoli allowing for uniform cellular drug internalization. However, although the field of nanomedicine offers multiple opportunities, it still is in its infancy and the research has to proceed in order to obtain a specific targeting of the drug combined with minimum side effects. If inhaled nanoparticulate drug delivery systems are deposited on the pulmonary surfactant, they come into contact with phospholipids and surfactant proteins. It is highly likely that the interaction of nanoparticulate drug delivery systems with surfactant phospholipids and proteins will be able to mediate/modulate the further fate of this specific drug delivery system. In the present comment, we discuss the potential interactions of nanoparticulate drug delivery systems with pulmonary surfactant as well as the potential consequences of this interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drug-drug interaction between statins metabolised by cytochrome P450 3A4 and clopidogrel have been claimed to attenuate the inhibitory effect of clopidogrel. However, published data regarding this drug-drug interaction are controversial. We aimed to determine the effect of fluvastatin and atorvastatin on the inhibitory effect of dual antiplatelet therapy with acetylsalicylic acid (ASA) and clopidogrel. One hundred one patients with symptomatic stable coronary artery disease undergoing percutaneous coronary intervention and drug-eluting stent implantation were enrolled in this prospective randomised study. After an interval of two weeks under dual antiplatelet therapy with ASA and clopidogrel, without any lipid-lowering drug, 87 patients were randomised to receive a treatment with either fluvastatin 80 mg daily or atorvastatin 40 mg daily in addition to the dual antiplatelet therapy for one month. Platelet aggregation was assessed using light transmission aggregometry and whole blood impedance platelet aggregometry prior to randomisation and after one month of receiving assigned statin and dual antiplatelet treatment. Platelet function assessment after one month of statin and dual antiplatelet therapy did not show a significant change in platelet aggregation from 1st to 2nd assessment for either statin group. There was also no difference between atorvastatin and fluvastatin treatment arms. In conclusion, neither atorvastatin 40 mg daily nor fluvastatin 80 mg daily administered in combination with standard dual antiplatelet therapy following coronary drug-eluting stent implantation significantly interfere with the antiaggregatory effect of ASA and clopidogrel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial factors may contribute to the global emergence and spread of drug-resistant tuberculosis (TB). Only a few studies have reported on the interactions between different bacterial factors. We studied drug-resistant Mycobacterium tuberculosis isolates from a nationwide study conducted from 2000 to 2008 in Switzerland. We determined quantitative drug resistance levels of first-line drugs by using Bactec MGIT-960 and drug resistance genotypes by sequencing the hot-spot regions of the relevant genes. We determined recent transmission by molecular methods and collected clinical data. Overall, we analyzed 158 isolates that were resistant to isoniazid, rifampin, or ethambutol, 48 (30.4%) of which were multidrug resistant. Among 154 isoniazid-resistant strains, katG mutations were associated with high-level and inhA promoter mutations with low-level drug resistance. Only katG(S315T) (65.6% of all isoniazid-resistant strains) and inhA promoter -15C/T (22.7%) were found in molecular clusters. M. tuberculosis lineage 2 (includes Beijing genotype) was associated with any drug resistance (adjusted odds ratio [OR], 3.0; 95% confidence interval [CI], 1.7 to 5.6; P < 0.0001). Lineage 1 was associated with inhA promoter -15C/T mutations (OR, 6.4; 95% CI, 2.0 to 20.7; P = 0.002). We found that the genetic strain background influences the level of isoniazid resistance conveyed by particular mutations (interaction tests of drug resistance mutations across all lineages; P < 0.0001). In conclusion, M. tuberculosis drug resistance mutations were associated with various levels of drug resistance and transmission, and M. tuberculosis lineages were associated with particular drug resistance-conferring mutations and phenotypic drug resistance. Our study also supports a role for epistatic interactions between different drug resistance mutations and strain genetic backgrounds in M. tuberculosis drug resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In drug hypersensitivity, change of drug treatment and continuation with a new drug may result in reappearance of drug hypersensitivity symptoms. This is not uncommon in patients with chronic infections requiring continued and long-lasting antibiotic treatments. For the clinician, the question arises whether these symptoms are due to cross-reactivity, are due to a new sensitization or are a reflection of a multiple drug hypersensitivity syndrome. Based on the p-i concept (pharmacological interaction with immune receptors), we propose that the efficient stimulation of T cells by a drug is the sum of drug-T-cell receptor affinity and readiness of the T cell to react, and therefore not constant. It heavily depends on the state of underlying immune activation. Consequently, drug hypersensitivity diseases, which go along with massive immune stimulations and often high serum cytokine values, are themselves risk factors for further drug hypersensitivity. The immune stimulation during drug hypersensitivity may, similar to generalized virus infections, lower the threshold of T-cell reactivity to drugs and cause rapid appearance of drug hypersensitivity symptoms to the second drug. We call the second hypersensitivity reaction a "flare-up" reaction; this is clinically important, as in most cases the second drug may be tolerated again, if the cofactors are missing. Moreover, the second treatment is often too short to cause a relevant sensitization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Once administered, a drug can activate the immune system by various mechanisms and lead to a large range of clinical manifestations closely related to the type of immune reaction elicited. Administration of the drug can classically result in an immunoglobulin E (IgE)-type sensitization, but can also result in more complex activation of the immune system potentially resulting in severe syndromes, such as the drug-induced hypersensitivity syndrome (DIHS). Although there has been a major increase in our knowledge over the last years, the exact mechanisms of drug allergy are not well understood for most clinical manifestations. A complex interaction between individual characteristics, environmental factors, and the drug itself is usually responsible for adverse reactions to drugs. In this educational review series, we described three cases of drug allergy: first, a child with a typical IgE-mediated drug allergy, second, a child with a non-immediate reaction to penicillin, and in the third patient, we will discuss the drug-induced hypersensitivity syndrome, which is rare but potentially fatal. These cases are correlated to the immune mechanism potentially involved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Various pharmacodynamic response surface models have been developed to quantitatively describe the relationship between two or more drug concentrations with their combined clinical effect. We examined the interaction of remifentanil and sevoflurane on the probability of tolerance to shake and shout, tetanic stimulation, laryngeal mask airway insertion, and laryngoscopy in patients to compare the performance of five different response surface models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent publications have shown that certain human leukocyte antigen (HLA) alleles are strongly associated with hypersensitivity to particular drugs. As HLA molecules are a critical element in T-cell stimulation, it is no surprise that particular HLA alleles have a direct functional role in the pathogenesis of drug hypersensitivity. In this context, a direct interaction of the relevant drug with HLA molecules as described by the p-i concept appears to be more relevant than presentation of hapten-modified peptides. In some HLA-associated drug hypersensitivity reactions, the presence of a risk allele is a necessary but incomplete factor for disease development. In carbamazepine and HLA-B*15:02, certain T-cell receptor (TCR) repertoires are required for immune activation. This additional requirement may be one of the 'missing links' in explaining why most individuals carrying this allele can tolerate the drug. In contrast, abacavir generates polyclonal T-cell response by interacting specifically with HLA-B*57:01 molecules. T cell stimulation may be due to presentation of abacavir or of altered peptides. While the presence of HLA-B*58:01 allele substantially increases the risk of allopurinol hypersensitivity, it is not an absolute requirement, suggesting that other factors also play an important role. In summary, drug hypersensitivity is the end result of a drug interaction with certain HLA molecules and TCRs, the sum of which determines whether the ensuing immune response is going to be harmful or not.