5 resultados para Drought strategies

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using drought as a lens, this article analyses how agro-pastoralists in Makueni district, Kenya adapt their livestock production to climate variability and change. Data were collected from a longitudinal survey of 127 agro-pastoral households. Approximately one-third of the households have inadequate feeds, and livestock diseases are major challenges during non-drought and drought periods. Agro-pastoralists’ responses to drought are reactive and mainly involve intensifying exploitation of resources and the commons. Proactive responses such as improving production resources are few. Poverty, limited responses to market dynamics and inadequate skills constrain adaptations. Many agro-pastoralists’ attachment to livestock deters livestock divestment, favouring disadvantageous sales that result in declining incomes. To improve adaptive capacity, interventions should expose agro-pastoralists to other forms of savings, incorporate agro-pastoralists as agents of change by building their capacity to provide extension services, and maintain infrastructure. Securing livestock mobility, pasture production and access is crucial under the variable social-ecological conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate change is expected to profoundly influence the hydrosphere of mountain ecosystems. The focus of current process-based research is centered on the reaction of glaciers and runoff to climate change; spatially explicit impacts on soil moisture remain widely neglected. We spatio-temporally analyzed the impact of the climate on soil moisture in a mesoscale high mountain catchment to facilitate the development of mitigation and adaptation strategies at the level of vegetation patterns. Two regional climate models were downscaled using three different approaches (statistical downscaling, delta change, and direct use) to drive a hydrological model (WaSiM-ETH) for reference and scenario period (1960–1990 and 2070–2100), resulting in an ensemble forecast of six members. For all ensembles members we found large changes in temperature, resulting in decreasing snow and ice storage and earlier runoff, but only small changes in evapotranspiration. The occurrence of downscaled dry spells was found to fluctuate greatly, causing soil moisture depletion and drought stress potential to show high variability in both space and time. In general, the choice of the downscaling approach had a stronger influence on the results than the applied regional climate model. All of the results indicate that summer soil moisture decreases, which leads to more frequent declines below a critical soil moisture level and an advanced evapotranspiration deficit. Forests up to an elevation of 1800 m a.s.l. are likely to be threatened the most, while alpine areas and most pastures remain nearly unaffected. Nevertheless, the ensemble variability was found to be extremely high and should be interpreted as a bandwidth of possible future drought stress situations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water is an important resource for plant life. Since climate scenarios for Switzerland predict an average reduction of 20% in summer precipitation until 2070, understanding ecosystem responses to water shortage, e.g. in terms of plant productivity, is of major concern. Thus, we tested the effects of simulated summer drought on three managed grasslands along an altitudinal gradient in Switzerland from 2005 to 2007, representing typical management intensities at the respective altitude. We assessed the effects of experimental drought on above- and below-ground productivity, stand structure (LAI and vegetation height) and resource use (carbon and water). Responses of community above-ground productivity to reduced precipitation input differed among the three sites but scaled positively with total annual precipitation at the sites (R2=0.85). Annual community above-ground biomass productivity was significantly reduced by summer drought at the alpine site receiving the least amount of annual precipitation, while no significant decrease (rather an increase) was observed at the pre-alpine site receiving highest precipitation amounts in all three years. At the lowland site (intermediate precipitation sums), biomass productivity significantly decreased in response to drought only in the third year, after showing increased abundance of a drought tolerant weed species in the second year. No significant change in below-ground biomass productivity was observed at any of the sites in response to simulated summer drought. However, vegetation carbon isotope ratios increased under drought conditions, indicating an increase in water use efficiency. We conclude that there is no general drought response of Swiss grasslands, but that sites with lower annual precipitation seem to be more vulnerable to summer drought than sites with higher annual precipitation, and thus site-specific adaptation of management strategies will be needed, especially in regions with low annual precipitation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper aims to further our understanding of pre-Columbian agricultural systems in the Llanos de Moxos, Bolivia. Three different types of raised fields co-existing in the same site near the community of Exaltación, in north-western Beni, were studied. The morphology, texture and geochemistry of the soils of these fields and the surrounding area were analysed. Differences in field design have often been associated with the diversity of cultural practices. Our results suggest that in the study area differences in field shape, height and layout are primarily the result of an adaptation to the local edaphology. By using the technology of raised fields, pre-Columbian people were able to drain and cultivate soils with very different characteristics, making the land suitable for agriculture and possibly different crops. This study also shows that some fields in the Llanos de Moxos were built to prolong the presence of water, allowing an additional cultivation period in the dry season and/or in times of drought. Nevertheless, the nature of the highly weathered soils suggests that raised fields were not able to support large populations and their management required long fallow periods.