37 resultados para Drill
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
When drilling ice cores deeper than ∼100 m, drill liquid is required to maintain ice-core quality and to limit borehole closure. Due to high-pressure air bubbles in the ice, the ice core can crack during drilling and core retrieval, typically at 600–1200 m depth in Greenland. Ice from this 'brittle zone' can be contaminated by drill liquid as it seeps through cracks into the core. Continuous flow analysis (CFA) systems are routinely used to analyse ice for chemical impurities, so the detection of drill liquid is important for validating accurate measurements and avoiding potential instrument damage. An optical detector was constructed to identify drill liquid in CFA tubing by ultraviolet absorption spectroscopy at a wavelength of 290 nm. The set-up was successfully field-tested in the frame of the NEEM ice-core drilling project in Greenland. A total of 27 cases of drill liquid contamination were identified during the analysis of 175 m of brittle zone ice. The analyses most strongly affected by drill liquid contamination include insoluble dust particles, electrolytic conductivity, ammonium, hydrogen peroxide and sulphate. This method may also be applied to other types of drill liquid used at other drill sites.
Resumo:
AIM: To describe a method of carrying out apical surgery of a maxillary molar using ultrasonics to create a lateral sinus window into the maxillary sinus and an endoscope to enhance visibility during surgery. SUMMARY: A 37-year-old female patient presented with tenderness to percussion of the maxillary second right molar. Root canal treatment had been undertaken, and the tooth restored with a metal-ceramic crown. Radiological examination revealed an apical radiolucency in close proximity to the maxillary sinus. Apical surgery of the molar was performed through the maxillary sinus, using ultrasonics for the osteotomy, creating a window in the lateral wall of the maxillary sinus. During surgery, the lining of the sinus was exposed and elevated without perforation. The root-end was resected using a round tungsten carbide drill, and the root-end cavity was prepared with ultrasonic retrotips. Root-end filling was accomplished with MTA(®) . An endoscope was used to examine the cut root face, the prepared cavity and the root-end filling. No intraoperative or postoperative complications were observed. At the 12-month follow-up, the tooth had no clinical signs or symptoms, and the radiograph demonstrated progressing resolution of the radiolucency. KEY LEARNING POINTS: When conventional root canal retreatment cannot be performed or has failed, apical surgery may be considered, even in maxillary molars with roots in close proximity to the maxillary sinus. Ultrasonic sinus window preparation allows more control and can minimize perforation of the sinus membrane when compared with conventional rotary drilling techniques. The endoscope enhances visibility during endodontic surgery, thus improving the quality of the case.
Resumo:
The osteogenic potential of autogenous bone grafts is superior to that of allografts and xenografts because of their ability to release osteoinductive growth factors and provide a natural osteoconductive surface for cell attachment and growth. In this in vitro study, autogenous bone particles were harvested by four commonly used techniques and compared for their ability to promote an osteogenic response. Primary osteoblasts were isolated and seeded on autogenous bone grafts prepared from the mandibles of miniature pigs with a bone mill, piezo-surgery, bone scraper, and bone drill (bone slurry). The osteoblast cultures were compared for their ability to promote cell attachment, proliferation, and differentiation. After 4 and 8 hrs, significantly higher cell numbers were associated with bone mill and bone scraper samples compared with those acquired by bone slurry and piezo-surgery. Similar patterns were consistently observed up to 5 days. Furthermore, osteoblasts seeded on bone mill and scraper samples expressed significantly elevated mRNA levels of collagen, osteocalcin, and osterix at 3 and 14 days and produced more mineralized tissue as assessed by alizarin red staining. These results suggest that the larger bone graft particles produced by bone mill and bone scraper techniques have a higher osteogenic potential than bone slurry and piezo-surgery.
Resumo:
Postmeningitic basal turn ossification is a challenge for successful cochlear implantation despite the availability of sophisticated implants and advanced drill-out procedures. A less complex concept consisting of a cochleostomy near the apex with retrograde array insertion is evaluated clinically and experimentally with emphasis on imaging of intracochlear array morphology.
Resumo:
The Greenland NGRIP ice core continuously covers the period from present day back to 123 ka before present, which includes several thousand years of ice from the previous interglacial period, MIS 5e or the Eemian. In the glacial part of the core, annual layers can be identified from impurity records and visual stratigraphy, and stratigraphic layer counting has been performed back to 60 ka. In the deepest part of the core, however, the ice is close to the pressure melting point, the visual stratigraphy is dominated by crystal boundaries, and annual layering is not visible to the naked eye. In this study, we apply a newly developed setup for high-resolution ice core impurity analysis to produce continuous records of dust, sodium and ammonium concentrations as well as conductivity of melt water. We analyzed three 2.2 m sections of ice from the Eemian and the glacial inception. In all of the analyzed ice, annual layers can clearly be recognized, most prominently in the dust and conductivity profiles. Part of the samples is, however, contaminated in dust, most likely from drill liquid. It is interesting that the annual layering is preserved despite a very active crystal growth and grain boundary migration in the deep and warm NGRIP ice. Based on annual layer counting of the new records, we determine a mean annual layer thickness close to 11 mm for all three sections, which, to first order, confirms the modeled NGRIP time scale (ss09sea). The counting does, however, suggest a longer duration of the climatically warmest part of the NGRIP record (MIS5e) of up to 1 ka as compared to the model estimate. Our results suggest that stratigraphic layer counting is possible basically throughout the entire NGRIP ice core, provided sufficiently highly-resolved profiles become available.
Resumo:
Background: Resonance frequency analysis (RFA) is a noninvasive technique for the quantitative assessment of implant stability. Information on the implant stability quotient (ISQ) of transmucosally inserted implants is limited. Purpose: The aim of this investigation was to compare the ISQ of conventionally inserted implants by raising a muco-periostal flap with implants inserted using a flapless procedure. Materials and Methods: Forty elderly patients with complete edentulous maxilla were consecutively admitted for treatment with implant-supported prostheses. A computer tomography was obtained for the computer-assisted implant planning. One hundred ten implants were placed conventionally in 23 patients (flap-group) and 85 implants in 17 patients by means of the flapless method (flapless-group) using a stereolithographic template. RFA measurements were performed after implant placement (baseline) and after a healing time of 12 weeks (reentry). Results: All implants exhibited clinically and radiographically successful osseointegration. Bone level did not change significantly neither for genders nor type of surgical protocol. Mean ISQ values of the flapless-group were significantly higher at baseline (p < .001) and at reentry (p < .001) compared with the flap-group. The ISQ values were significantly lower at reentry compared with baseline for the flap-group (p = .028) but not for the flapless-group. This group showed a moderate, but insignificant increase. RFA measurements of males resulted in ISQ values that were thoroughly higher as compared with females at both time-points in both groups. Correlation between RFA and bone level was not found. Conclusions: The flapless procedure showed favorable conditions with regard to implant stability and crestal bone level. Some changes of the ISQ values that represent primary (mechanical) and secondary (bone remodeling) implant stability were observed in slight favor of the flapless method and male patients. In properly planned and well-selected cases, the minimal invasive transmucosal technique using a drill-guide is a safe procedure.
Resumo:
PURPOSE : For the facilitation of minimally invasive robotically performed direct cochlea access (DCA) procedure, a surgical planning tool which enables the surgeon to define landmarks for patient-to-image registration, identify the necessary anatomical structures and define a safe DCA trajectory using patient image data (typically computed tomography (CT) or cone beam CT) is required. To this end, a dedicated end-to-end software planning system for the planning of DCA procedures that addresses current deficiencies has been developed. METHODS : Efficient and robust anatomical segmentation is achieved through the implementation of semiautomatic algorithms; high-accuracy patient-to-image registration is achieved via an automated model-based fiducial detection algorithm and functionality for the interactive definition of a safe drilling trajectory based on case-specific drill positioning uncertainty calculations was developed. RESULTS : The accuracy and safety of the presented software tool were validated during the conduction of eight DCA procedures performed on cadaver heads. The plan for each ear was completed in less than 20 min, and no damage to vital structures occurred during the procedures. The integrated fiducial detection functionality enabled final positioning accuracies of [Formula: see text] mm. CONCLUSIONS : Results of this study demonstrated that the proposed software system could aid in the safe planning of a DCA tunnel within an acceptable time.
Resumo:
Although loosening of cemented glenoid components is one of the major complications of total shoulder arthroplasty, there is little information about factors affecting initial fixation of these components in the scapular neck. This study was performed to assess the characteristics of structural fixation of pegged glenoid components, if inserted with two different recommended cementing techniques. Six fresh-frozen shoulder specimens and two types of glenoid components were used. The glenoids were prepared according to the instructions and with the instrumentation of the manufacturer. In 3 specimens, the bone cement was inserted into the peg receiving holes (n = 12) and applied to the back surface of the glenoid component with a syringe. In the other 3 specimens, the cement was inserted into the holes (n = 15) by use of pure finger pressure: no cement was applied on the backside of the component. Micro-computed tomography scans with a resolution of 36 microm showed an intact cement mantle around all 12 pegs (100%) when a syringe was used. An incomplete cement plug was found in 7 of 15 pegs (47%) when the finger-pressure technique was used. Cement penetration into the cancellous bone was deeper in osteopenic bone. Application of bone cement on the backside of the glenoid prosthesis improved seating by filling out small spaces between bone and polyethylene resulting from irregularities after reaming or local cement extrusion from a drill hole. The fixation of a pegged glenoid component is better if the holes are filled with cement under pressure by use of a syringe and if cement is applied to the back of the glenoid component than if cement is inserted with pure finger pressure and no cement is applied to the back surface of the component.
Resumo:
The removal of nonretrievable implant components represents a challenge in implant dentistry. The mechanical approach involves the risk of damaging the implant connection or the bone-to-implant interface. This case report describes a cryo-mechanical approach for the safe removal of a nonretrievable implant component. A patient had an implant surgically placed in a private practice. When the patient returned to the restorative dentist to make a definitive impression, the healing abutment could not be loosened. The patient was referred to the Division of Fixed Prosthodontics (University of Bern, Switzerland), where the stripped screw hole was enlarged with a special drill from a service kit of the implant provider. Although an extraction bolt was screwed into the opening and the torque ratchet was activated, the healing abutment would not loosen. A novel approach was attempted whereby the healing abutment was cooled with dry ice (CO2). The cooling effect seemingly caused shrinkage of the healing abutment and a reduction of the connection forces between the implant and the nonretrievable component. The approach of creating an access hole for the application of reverse torque via the extraction bolt in combination with the thermal effect led to the successful removal of the blocked component. Neither the implant connection nor the bone-to-implant interface was damaged. The combined cryo-mechanical procedure allowed the implant to be successfully restored.
Resumo:
HYPOTHESIS A previously developed image-guided robot system can safely drill a tunnel from the lateral mastoid surface, through the facial recess, to the middle ear, as a viable alternative to conventional mastoidectomy for cochlear electrode insertion. BACKGROUND Direct cochlear access (DCA) provides a minimally invasive tunnel from the lateral surface of the mastoid through the facial recess to the middle ear for cochlear electrode insertion. A safe and effective tunnel drilled through the narrow facial recess requires a highly accurate image-guided surgical system. Previous attempts have relied on patient-specific templates and robotic systems to guide drilling tools. In this study, we report on improvements made to an image-guided surgical robot system developed specifically for this purpose and the resulting accuracy achieved in vitro. MATERIALS AND METHODS The proposed image-guided robotic DCA procedure was carried out bilaterally on 4 whole head cadaver specimens. Specimens were implanted with titanium fiducial markers and imaged with cone-beam CT. A preoperative plan was created using a custom software package wherein relevant anatomical structures of the facial recess were segmented, and a drill trajectory targeting the round window was defined. Patient-to-image registration was performed with the custom robot system to reference the preoperative plan, and the DCA tunnel was drilled in 3 stages with progressively longer drill bits. The position of the drilled tunnel was defined as a line fitted to a point cloud of the segmented tunnel using principle component analysis (PCA function in MatLab). The accuracy of the DCA was then assessed by coregistering preoperative and postoperative image data and measuring the deviation of the drilled tunnel from the plan. The final step of electrode insertion was also performed through the DCA tunnel after manual removal of the promontory through the external auditory canal. RESULTS Drilling error was defined as the lateral deviation of the tool in the plane perpendicular to the drill axis (excluding depth error). Errors of 0.08 ± 0.05 mm and 0.15 ± 0.08 mm were measured on the lateral mastoid surface and at the target on the round window, respectively (n =8). Full electrode insertion was possible for 7 cases. In 1 case, the electrode was partially inserted with 1 contact pair external to the cochlea. CONCLUSION The purpose-built robot system was able to perform a safe and reliable DCA for cochlear implantation. The workflow implemented in this study mimics the envisioned clinical procedure showing the feasibility of future clinical implementation.
Resumo:
The application of image-guided systems with or without support by surgical robots relies on the accuracy of the navigation process, including patient-to-image registration. The surgeon must carry out the procedure based on the information provided by the navigation system, usually without being able to verify its correctness beyond visual inspection. Misleading surrogate parameters such as the fiducial registration error are often used to describe the success of the registration process, while a lack of methods describing the effects of navigation errors, such as those caused by tracking or calibration, may prevent the application of image guidance in certain accuracy-critical interventions. During minimally invasive mastoidectomy for cochlear implantation, a direct tunnel is drilled from the outside of the mastoid to a target on the cochlea based on registration using landmarks solely on the surface of the skull. Using this methodology, it is impossible to detect if the drill is advancing in the correct direction and that injury of the facial nerve will be avoided. To overcome this problem, a tool localization method based on drilling process information is proposed. The algorithm estimates the pose of a robot-guided surgical tool during a drilling task based on the correlation of the observed axial drilling force and the heterogeneous bone density in the mastoid extracted from 3-D image data. We present here one possible implementation of this method tested on ten tunnels drilled into three human cadaver specimens where an average tool localization accuracy of 0.29 mm was observed.
Resumo:
HYPOTHESIS Facial nerve monitoring can be used synchronous with a high-precision robotic tool as a functional warning to prevent of a collision of the drill bit with the facial nerve during direct cochlear access (DCA). BACKGROUND Minimally invasive direct cochlear access (DCA) aims to eliminate the need for a mastoidectomy by drilling a small tunnel through the facial recess to the cochlea with the aid of stereotactic tool guidance. Because the procedure is performed in a blind manner, structures such as the facial nerve are at risk. Neuromonitoring is a commonly used tool to help surgeons identify the facial nerve (FN) during routine surgical procedures in the mastoid. Recently, neuromonitoring technology was integrated into a commercially available drill system enabling real-time monitoring of the FN. The objective of this study was to determine if this drilling system could be used to warn of an impending collision with the FN during robot-assisted DCA. MATERIALS AND METHODS The sheep was chosen as a suitable model for this study because of its similarity to the human ear anatomy. The same surgical workflow applicable to human patients was performed in the animal model. Bone screws, serving as reference fiducials, were placed in the skull near the ear canal. The sheep head was imaged using a computed tomographic scanner and segmentation of FN, mastoid, and other relevant structures as well as planning of drilling trajectories was carried out using a dedicated software tool. During the actual procedure, a surgical drill system was connected to a nerve monitor and guided by a custom built robot system. As the planned trajectories were drilled, stimulation and EMG response signals were recorded. A postoperative analysis was achieved after each surgery to determine the actual drilled positions. RESULTS Using the calibrated pose synchronized with the EMG signals, the precise relationship between distance to FN and EMG with 3 different stimulation intensities could be determined for 11 different tunnels drilled in 3 different subjects. CONCLUSION From the results, it was determined that the current implementation of the neuromonitoring system lacks sensitivity and repeatability necessary to be used as a warning device in robotic DCA. We hypothesize that this is primarily because of the stimulation pattern achieved using a noninsulated drill as a stimulating probe. Further work is necessary to determine whether specific changes to the design can improve the sensitivity and specificity.