15 resultados para Documentary evidence
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We use long instrumental temperature series together with available field reconstructions of sea-level pressure (SLP) and three-dimensional climate model simulations to analyze relations between temperature anomalies and atmospheric circulation patterns over much of Europe and the Mediterranean for the late winter/early spring (January–April, JFMA) season. A Canonical Correlation Analysis (CCA) investigates interannual to interdecadal covariability between a new gridded SLP field reconstruction and seven long instrumental temperature series covering the past 250 years. We then present and discuss prominent atmospheric circulation patterns related to anomalous warm and cold JFMA conditions within different European areas spanning the period 1760–2007. Next, using a data assimilation technique, we link gridded SLP data with a climate model (EC-Bilt-Clio) for a better dynamical understanding of the relationship between large scale circulation and European climate. We thus present an alternative approach to reconstruct climate for the pre-instrumental period based on the assimilated model simulations. Furthermore, we present an independent method to extend the dynamic circulation analysis for anomalously cold European JFMA conditions back to the sixteenth century. To this end, we use documentary records that are spatially representative for the long instrumental records and derive, through modern analogs, large-scale SLP, surface temperature and precipitation fields. The skill of the analog method is tested in the virtual world of two three-dimensional climate simulations (ECHO-G and HadCM3). This endeavor offers new possibilities to both constrain climate model into a reconstruction mode (through the assimilation approach) and to better asses documentary data in a quantitative way.
Resumo:
This review of late-Holocene palaeoclimatology represents the results from a PAGES/CLIVAR Intersection Panel meeting that took place in June 2006. The review is in three parts: the principal high-resolution proxy disciplines (trees, corals, ice cores and documentary evidence), emphasizing current issues in their use for climate reconstruction; the various approaches that have been adopted to combine multiple climate proxy records to provide estimates of past annual-to-decadal timescale Northern Hemisphere surface temperatures and other climate variables, such as large-scale circulation indices; and the forcing histories used in climate model simulations of the past millennium. We discuss the need to develop a framework through which current and new approaches to interpreting these proxy data may be rigorously assessed using pseudo-proxies derived from climate model runs, where the `answer' is known. The article concludes with a list of recommendations. First, more raw proxy data are required from the diverse disciplines and from more locations, as well as replication, for all proxy sources, of the basic raw measurements to improve absolute dating, and to better distinguish the proxy climate signal from noise. Second, more effort is required to improve the understanding of what individual proxies respond to, supported by more site measurements and process studies. These activities should also be mindful of the correlation structure of instrumental data, indicating which adjacent proxy records ought to be in agreement and which not. Third, large-scale climate reconstructions should be attempted using a wide variety of techniques, emphasizing those for which quantified errors can be estimated at specified timescales. Fourth, a greater use of climate model simulations is needed to guide the choice of reconstruction techniques (the pseudo-proxy concept) and possibly help determine where, given limited resources, future sampling should be concentrated.
Resumo:
The heat waves of 2003 in Western Europe and 2010 in Russia, commonly labelled as rare climatic anomalies outside of previous experience, are often taken as harbingers of more frequent extremes in the global warming-influenced future. However, a recent reconstruction of spring–summer temperatures for WE resulted in the likelihood of significantly higher temperatures in 1540. In order to check the plausibility of this result we investigated the severity of the 1540 drought by putting forward the argument of the known soil desiccation-temperature feedback. Based on more than 300 first-hand documentary weather report sources originating from an area of 2 to 3 million km2, we show that Europe was affected by an unprecedented 11-month-long Megadrought. The estimated number of precipitation days and precipitation amount for Central and Western Europe in 1540 is significantly lower than the 100-year minima of the instrumental measurement period for spring, summer and autumn. This result is supported by independent documentary evidence about extremely low river flows and Europe-wide wild-, forest- and settlement fires. We found that an event of this severity cannot be simulated by state-of-the-art climate models.
Resumo:
The heat of summer 2003 in Western and Central Europe was claimed to be unprecedented since the Middle Ages on the basis of grape harvest data (GHD) and late wood maximum density (MXD) data from trees in the Alps. This paper shows that the authors of these studies overlooked the fact that the heat and drought in Switzerland in 1540 likely exceeded the amplitude of the previous hottest summer of 2003, because the persistent temperature and precipitation anomaly in that year, described in an abundant and coherent body of documentary evidence, severely affected the reliability of GHD and tree-rings as proxy-indicators for temperature estimates. Spring–summer (AMJJ) temperature anomalies of 4.7 °C to 6.8 °C being significantly higher than in 2003 were assessed for 1540 from a new long Swiss GHD series (1444 to 2011). During the climax of the heat wave in early August the grapes desiccated on the vine, which caused many vine-growers to interrupt or postpone the harvest despite full grape maturity until after the next spell of rain. Likewise, the leaves of many trees withered and fell to the ground under extreme drought stress as would usually be expected in late autumn. It remains to be determined by further research whether and how far this result obtained from local analyses can be spatially extrapolated. Based on the temperature estimates for Switzerland it is assumed from a great number of coherent qualitative documentary evidence about the outstanding heat drought in 1540 that AMJJ temperatures were likely more extreme in neighbouring regions of Western and Central Europe than in 2003. Considering the significance of soil moisture deficits for record breaking heat waves, these results still need to be validated with estimated seasonal precipitation. It is concluded that biological proxy data may not properly reveal record breaking heat and drought events. Such assessments thus need to be complemented with the critical study of contemporary evidence from documentary sources which provide coherent and detailed data about weather extremes and related impacts on human, ecological and social systems.
Resumo:
The magnitudes of the largest known floods of the River Rhine in Basel since 1268 were assessed using a hydraulic model drawing on a set of pre-instrumental evidence and daily hydrological measurements from 1808. The pre-instrumental evidence, consisting of flood marks and documentary data describing extreme events with the customary reference to specific landmarks, was “calibrated” by comparing it with the instrumental series for the overlapping period between the two categories of evidence (1808–1900). Summer (JJA) floods were particularly frequent in the century between 1651–1750, when precipitation was also high. Severe winter (DJF) floods have not occurred since the late 19th century despite a significant increase in winter precipitation. Six catastrophic events involving a runoff greater than 6000 m 3 s-1 are documented prior to 1700. They were initiated by spells of torrential rainfall of up to 72 h (1480 event) and preceded by long periods of substantial precipitation that saturated the soils, and/or by abundant snowmelt. All except two (1999 and 2007) of the 43 identified severe events (SEs: defined as having runoff > 5000 and < 6000 m 3 s -1) occurred prior to 1877. Not a single SE is documented from 1877 to 1998. The intermediate 121-year-long “flood disaster gap” is unique over the period since 1268. The effect of river regulations (1714 for the River Kander; 1877 for the River Aare) and the building of reservoirs in the 20th century upon peak runoff were investigated using a one-dimensional hydraulic flood-routing model. Results show that anthropogenic effects only partially account for the “flood disaster gap” suggesting that variations in climate should also be taken into account in explaining these features.