6 resultados para Distributed Video Server

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mobile multimedia ad hoc services run on dynamic topologies due to node mobility or failures and wireless channel impairments. A robust routing service must adapt to topology changes with the aim of recovering or maintaining the video quality level and reducing the impact of the user's experience. In those scenarios, beacon-less Opportunistic Routing (OR) increases the robustness by supporting routing decisions in a completely distributed manner based on protocol-specific characteristics. However, the existing beacon-less OR approaches do not efficiently combine multiple metrics for forwarding selection, which cause higher packet loss rate, and consequently reduce the video quality level. In this paper, we assess the robustness and reliability of our recently developed OR protocol under node failures, called cross-layer Link quality and Geographical-aware OR protocol (LinGO). Simulation results show that LinGO achieves multimedia dissemination with QoE support and robustness in scenarios with dynamic topologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wireless Multimedia Sensor Networks (WMSNs) promise a wide scope of emerging potential applications in both civilian and military areas, which require visual and audio information to enhance the level of collected information. The transmission of multimedia content requires a minimal video quality level from the user’s perspective. However, links in WMSN communi- cations are typically unreliable, as they often experience fluctuations in quality and weak connectivity, and thus, the routing protocol must evaluate the routes by using end-to-end link quality information to increase the packet delivery ratio. Moreover, the use multiple paths together with key video metrics can enhance the video quality level. In this paper, we propose a video-aware multiple path hierarchical routing protocol for efficient multimedia transmission over WMSN, called video-aware MMtransmission. This protocol finds node-disjoint multiple paths, and implements an end-to-end link quality estimation with minimal over- head to score the paths. Thus, our protocol assures multimedia transmission with Quality of Experience (QoE) and energy-efficiency support. The simula- tion results show the benefits of video-aware MMtransmission for disseminating video content by means of energy-efficiency and QoE analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wireless mobile sensor networks are enlarging the Internet of Things (IoT) portfolio with a huge number of multimedia services for smart cities. Safety and environmental monitoring multimedia applications will be part of the Smart IoT systems, which aim to reduce emergency response time, while also predicting hazardous events. In these mobile and dynamic (possible disaster) scenarios, opportunistic routing allows routing decisions in a completely distributed manner, by using a hop- by-hop route decision based on protocol-specific characteristics, and a predefined end-to-end path is not a reliable solution. This enables the transmission of video flows of a monitored area/object with Quality of Experience (QoE) support to users, headquarters or IoT platforms. However, existing approaches rely on a single metric to make the candidate selection rule, including link quality or geographic information, which causes a high packet loss rate, and reduces the video perception from the human standpoint. This article proposes a cross-layer Link quality and Geographical-aware Opportunistic routing protocol (LinGO), which is designed for video dissemination in mobile multimedia IoT environments. LinGO improves routing decisions using multiple metrics, including link quality, geographic loca- tion, and energy. The simulation results show the benefits of LinGO compared with well-known routing solutions for video transmission with QoE support in mobile scenarios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study state-based video communication where a client simultaneously informs the server about the presence status of various packets in its buffer. In sender-driven transmission, the client periodically sends to the server a single acknowledgement packet that provides information about all packets that have arrived at the client by the time the acknowledgment is sent. In receiver-driven streaming, the client periodically sends to the server a single request packet that comprises a transmission schedule for sending missing data to the client over a horizon of time. We develop a comprehensive optimization framework that enables computing packet transmission decisions that maximize the end-to-end video quality for the given bandwidth resources, in both prospective scenarios. The core step of the optimization comprises computing the probability that a single packet will be communicated in error as a function of the expected transmission redundancy (or cost) used to communicate the packet. Through comprehensive simulation experiments, we carefully examine the performance advances that our framework enables relative to state-of-the-art scheduling systems that employ regular acknowledgement or request packets. Consistent gains in video quality of up to 2B are demonstrated across a variety of content types. We show that there is a direct analogy between the error-cost efficiency of streaming a single packet and the overall rate-distortion performance of streaming the whole content. In the case of sender-driven transmission, we develop an effective modeling approach that accurately characterizes the end-to-end performance as a function of the packet loss rate on the backward channel and the source encoding characteristics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we propose a distributed rate allocation algorithm that minimizes the average decoding delay for multimedia clients in inter-session network coding systems. We consider a scenario where the users are organized in a mesh network and each user requests the content of one of the available sources. We propose a novel distributed algorithm where network users determine the coding operations and the packet rates to be requested from the parent nodes, such that the decoding delay is minimized for all clients. A rate allocation problem is solved by every user, which seeks the rates that minimize the average decoding delay for its children and for itself. Since this optimization problem is a priori non-convex, we introduce the concept of equivalent packet flows, which permits to estimate the expected number of packets that every user needs to collect for decoding. We then decompose our original rate allocation problem into a set of convex subproblems, which are eventually combined to obtain an effective approximate solution to the delay minimization problem. The results demonstrate that the proposed scheme eliminates the bottlenecks and reduces the decoding delay experienced by users with limited bandwidth resources. We validate the performance of our distributed rate allocation algorithm in different video streaming scenarios using the NS-3 network simulator. We show that our system is able to take benefit of inter-session network coding for simultaneous delivery of video sessions in networks with path diversity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Video‐Supported Learning is particularly effective when it comes to skills and behaviors. Video registration of patient‐physician interviews, class room instruction or practical skills allow it to learners themselves, their peers, and their tutors to assess the quality of the learner's performance, to give specific feedback, and to make suggestions for improvement. Methods: In Switzerland, four pedagogical universities and two medical faculties joined to initiate the development of a national infrastructure for Video Supported Learning. The goal was to have a system that is simple to use, has most steps automated, provides the videos over the Internet, and has a sophisticated access control. Together with SWITCH, the national IT‐Support‐Organisation for Swiss Universities, the program iVT (Individual Video Training) was developed by integrating two preexisting technologies. The first technology is SWITCHcast, a podcast system. With SWITCHcast, videos are automatically uploaded to a server as soon as the registration is over. There the videos are processed and converted to different formats. The second technology is the national Single Logon System AAI (Authentification and Authorization Infrastructure) that enables iVT to link each video with the corresponding learner. The learner starts the registration with his Single Logon. Thus, the video can unambiguously be assigned. Via his institution's Learning Management System (LMS), the learner can access his video and give access to his video to peers and tutors. Results: iVT is now used at all involved institutions. The system works flawlessly. In Bern, we use iVT for the communications skills training in the forth and sixth year. Since students meet with patient actors alone, iVT is also used to certify attendance. Students are encouraged to watch the videos of the interview and the feedback of the patient actor. The offer to discuss a video with a tutor was not used by the students. Discussion: We plan to expand the use of iVT by making peer assessment compulsory. To support this, annotation capabilities are currently added to iVT. We also want to use iVT in training of practical skills, again for self as well as for peer assessment.  At present, we use iVT for quality control of patient actor's performance.