47 resultados para Dissolution kinetics

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phosphate release kinetics in soils are of global interest because sustainable plant nutrition with phosphate will be a major concern in the future. Dissolution of phosphate-containing minerals induced by a changing rhizosphere equilibrium through proton input is one important mechanism that releases phosphate into bioavailable forms. Our objectives were (i) to determine phosphate release kinetics during H+ addition in calcareous soils of the Schwäbische Alb, Germany, and to assess the influence of (ii) land-use type (grassland vs. forest) and (iii) management intensity on reactive phosphate pools and phosphate release rate constants during H+ addition. Phosphate release kinetics were characterized by a large fast-reacting phosphatepool, which could be attributed to poorly-crystalline calcium phosphates, and a small slow-reacting phosphate pool probably originating from carbonate-bearing hydroxylapatite. Both reactive phosphate pools—as well as total phosphate concentrations (TP) in soil—were greater in grassland than in forest soils. In organically fertilized grassland soils, concentrations of released phosphate were higher than in unfertilized soils, likely because organic fertilizers contain poorly-crystalline phosphate compounds which are further converted into sparingly soluble phosphate forms. Because of an enriched slow-reacting phosphate pool, mown pastures were characterized by a more continuous slow phosphate release reaction in contrast to clear biphasic phosphate release patterns in meadows. Consequently, managing phosphate release kinetics via management measures is a valuable tool to evaluate longer-term P availability in soil in the context of finite rock phosphate reserves on earth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of porosity due to dissolution/precipitation processes of minerals and the associated change of transport parameters are of major interest for natural geological environments and engineered underground structures. We designed a reproducible and fast to conduct 2D experiment, which is flexible enough to investigate several process couplings implemented in the numerical code OpenGeosys-GEM (OGS-GEM). We investigated advective-diffusive transport of solutes, effect of liquid phase density on advective transport, and kinetically controlled dissolution/precipitation reactions causing porosity changes. In addition, the system allowed to investigate the influence of microscopic (pore scale) processes on macroscopic (continuum scale) transport. A Plexiglas tank of dimension 10 × 10 cm was filled with a 1 cm thick reactive layer consisting of a bimodal grain size distribution of celestite (SrSO4) crystals, sandwiched between two layers of sand. A barium chloride solution was injected into the tank causing an asymmetric flow field to develop. As the barium chloride reached the celestite region, dissolution of celestite was initiated and barite precipitated. Due to the higher molar volume of barite, its precipitation caused a porosity decrease and thus also a decrease in the permeability of the porous medium. The change of flow in space and time was observed via injection of conservative tracers and analysis of effluents. In addition, an extensive post-mortem analysis of the reacted medium was conducted. We could successfully model the flow (with and without fluid density effects) and the transport of conservative tracers with a (continuum scale) reactive transport model. The prediction of the reactive experiments initially failed. Only the inclusion of information from post-mortem analysis gave a satisfactory match for the case where the flow field changed due to dissolution/precipitation reactions. We concentrated on the refinement of post-mortem analysis and the investigation of the dissolution/precipitation mechanisms at the pore scale. Our analytical techniques combined scanning electron microscopy (SEM) and synchrotron X-ray micro-diffraction/micro-fluorescence performed at the XAS beamline (Swiss Light Source). The newly formed phases include an epitaxial growth of barite micro-crystals on large celestite crystals (epitaxial growth) and a nano-crystalline barite phase (resulting from the dissolution of small celestite crystals) with residues of celestite crystals in the pore interstices. Classical nucleation theory, using well-established and estimated parameters describing barite precipitation, was applied to explain the mineralogical changes occurring in our system. Our pore scale investigation showed limits of the continuum scale reactive transport model. Although kinetic effects were implemented by fixing two distinct rates for the dissolution of large and small celestite crystals, instantaneous precipitation of barite was assumed as soon as oversaturation occurred. Precipitation kinetics, passivation of large celestite crystals and metastability of supersaturated solutions, i.e. the conditions under which nucleation cannot occur despite high supersaturation, were neglected. These results will be used to develop a pore scale model that describes precipitation and dissolution of crystals at the pore scale for various transport and chemical conditions. Pore scale modelling can be used to parameterize constitutive equations to introduce pore-scale corrections into macroscopic (continuum) reactive transport models. Microscopic understanding of the system is fundamental for modelling from the pore to the continuum scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymers that are used in clinical practice as bone-defect-filling materials possess many essential qualities, such as moldability, mechanical strength and biodegradability, but they are neither osteoconductive nor osteoinductive. Osteoconductivity can be conferred by coating the material with a layer of calcium phosphate, which can be rendered osteoinductive by functionalizing it with an osteogenic agent. We wished to ascertain whether the morphological and physicochemical characteristics of unfunctionalized and bovine-serum-albumin (BSA)-functionalized calcium-phosphate coatings were influenced by the surface properties of polymeric carriers. The release kinetics of the protein were also investigated. Two sponge-like materials (Helistat® and Polyactive®) and two fibrous ones (Ethisorb and poly[lactic-co-glycolic acid]) were tested. The coating characteristics were evaluated using state-of-the-art methodologies. The release kinetics of BSA were monitored spectrophotometrically. The characteristics of the amorphous and the crystalline phases of the coatings were not influenced by either the surface chemistry or the surface geometry of the underlying polymer. The mechanism whereby BSA was incorporated into the crystalline layer and the rate of release of the truly incorporated depot were likewise unaffected by the nature of the polymeric carrier. Our biomimetic coating technique could be applied to either spongy or fibrous bone-defect-filling organic polymers, with a view to rendering them osteoconductive and osteoinductive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To determine the formation and dissolution of calcium fluoride on the enamel surface after application of two fluoride gel-saliva mixtures. METHOD AND MATERIALS: From each of 80 bovine incisors, two enamel specimens were prepared and subjected to two different treatment procedures. In group 1, 80 specimens were treated with a mixture of an amine fluoride gel (1.25% F-; pH 5.2; 5 minutes) and human saliva. In group 2, 80 enamel blocks were subjected to a mixture of sodium fluoride gel (1.25% F; pH 5.5; 5 minutes) and human saliva. Subsequent to fluoride treatment, 40 specimens from each group were stored in human saliva and sterile water, respectively. Ten specimens were removed after each of 1 hour, 24 hours, 2 days, and 5 days and analyzed according to potassium hydroxide-soluble fluoride. RESULTS: Application of amine fluoride gel resulted in a higher amount of potassium hydroxide-soluble fluoride than did sodium fluoride gel 1 hour after application. Saliva exerted an inhibitory effect according to the dissolution rate of calcium fluoride. However, after 5 days, more than 90% of the precipitated calcium fluoride was dissolved in the amine fluoride group, and almost all potassium hydroxide-soluble fluoride was lost in the sodium fluoride group. Calcium fluoride apparently dissolves rapidly, even at almost neutral pH. CONCLUSION: Considering the limitations of an in vitro study, it is concluded that highly concentrated fluoride gels should be applied at an adequate frequency to reestablish a calcium fluoride-like layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aims of this study were to determine the effects of pH and acid concentration on the dissolution of enamel, dentine, and compressed hydroxyapatite (HA) in citric acid solutions (15.6 and 52.1 mmol l(-1) ; pH 2.45, 3.2, and 3.9), using a pH-stat system. After an initial adjustment period, the dissolution rates of enamel and HA were constant, while that of dentine decreased with time. The dissolution rate increased as the pH decreased, and this was most marked for enamel. To compare substrates, the rate of mineral dissolution was normalized to the area occupied by mineral at the specimen surface. For a given acid concentration, the normalized dissolution rate of HA was always less than that for either dentine or enamel. The dissolution rate for dentine mineral was similar to that for enamel at pH 2.45 and greater at pH 3.2 and pH 3.9. The concentration of acid significantly affected the enamel dissolution rate at pH 2.45 and pH 3.2, but not at pH 3.9, and did not significantly affect the dissolution rates of dentine or HA at any pH. The variation in response of the dissolution rate to acid concentration/buffer capacity with respect to pH and tissue type might complicate attempts to predict erosive potential from solution composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, aerosol processes are widely used for the manufacture of nanoparticles (NPs), creating an increased occupational exposure risk of workers, laboratory personnel and scientists to airborne particles. There is evidence that possible adverse effects are linked with the accumulation of NPs in target cells, pointing out the importance of understanding the kinetics of particle internalization. In this context, the uptake kinetics of representative airborne NPs over 30 min and their internalization after 24 h post-exposure were investigated by the use of a recently established exposure system. This system combines the production of aerosolized cerium oxide (CeO(2)) NPs by flame spray synthesis with its simultaneous particle deposition from the gas-phase onto A549 lung cells, cultivated at the air-liquid interface. Particle uptake was quantified by mass spectrometry after several exposure times (0, 5, 10, 20 and 30 min). Over 35% of the deposited mass was found internalized after 10 min exposure, a value that increased to 60% after 30 min exposure. Following an additional 24 h post-incubation, a time span, after which adverse biological effects were observed in previous experiments, over 80% of total CeO(2) could be detected intracellularly. On the ultrastructural level, focal cerium aggregates were present on the apical surface of A549 cells and could also be localized intracellularly in vesicular structures. The uptake behaviour of aerosolized CeO(2) is in line with observations on cerium suspensions, where particle mass transport was identified as the rate-limiting factor for NP internalization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work covers the synthesis of second-generation, ethylene glycol dendrons covalently linked to a surface anchor that contains two, three, or four catechol groups, the molecular assembly in aqueous buffer on titanium oxide surfaces, and the evaluation of the resistance of the monomolecular adlayers against nonspecific protein adsorption in contact with full blood serum. The results were compared to those of a linear poly(ethylene glycol) (PEG) analogue with the same molecular weight. The adsorption kinetics as well as resulting surface coverages were monitored by ex situ spectroscopic ellipsometry (VASE), in situ optical waveguide lightmode spectroscopy (OWLS), and quartz crystal microbalance with dissipation (QCM-D) investigations. The expected compositions of the macromolecular films were verified by X-ray photoelectron spectroscopy (XPS). The results of the adsorption study, performed in a high ionic strength ("cloud-point") buffer at room temperature, demonstrate that the adsorption kinetics increase with increasing number of catechol binding moieties and exceed the values found for the linear PEG analogue. This is attributed to the comparatively smaller and more confined molecular volume of the dendritic macromolecules in solution, the improved presentation of the catechol anchor, and/or their much lower cloud-point in the chosen buffer (close to room temperature). Interestingly, in terms of mechanistic aspects of "nonfouling" surface properties, the dendron films were found to be much stiffer and considerably less hydrated in comparison to the linear PEG brush surface, closer in their physicochemical properties to oligo(ethylene glycol) alkanethiol self-assembled monolayers than to conventional brush surfaces. Despite these differences, both types of polymer architectures at saturation coverage proved to be highly resistant toward protein adsorption. Although associated with higher synthesis costs, dendritic macromolecules are considered to be an attractive alternative to linear polymers for surface (bio)functionalization in view of their spontaneous formation of ultrathin, confluent, and nonfouling monolayers at room temperature and their outstanding ability to present functional ligands (coupled to the termini of the dendritic structure) at high surface densities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It was our aim to investigate the gadolinium diethylenetriaminepentaacetate (Gd-DTPA(2-) ) enhancement kinetics in the menisci of the knee joint over a prolonged period of time. Six asymptomatic volunteers (four men and two women; mean age, 25 ± 2.4 years) were enrolled. Sagittal, T(1) -weighted, spin-echo MR sequences of the right knee joint were obtained at 3 T. Imaging was performed before (baseline), 1 h after and in half-hour intervals up to 9 h after the intravenous administration of 0.2 mmol/kg of Gd-DTPA(2-) . To measure the rates of contrast enhancement relative to the baseline, regions of interest that covered the anterior and posterior horns of the medial and lateral meniscus were defined on each of two adjacent sections, and enhancement curves were constructed. An enhancement peak between 2.5 and 4.5 h after Gd-DTPA(2-) administration was observed, and analysis of variance also revealed no significant difference (p=0.94), in terms of enhancement, within this time interval. Pair-wise, post hoc testing also revealed no significant differences between 2.5 and 3, 3 and 3.5, 3.5 and 4, and 4 and 4.5 h post Gd-DTPA(2-) application. Our preliminary data therefore suggest that the time window suitable for a dGEMRIC (delayed gadolinium-enhanced MRI of cartilage)-like T(1) mapping of the menisci is relatively short, and lies between 2.5 and 4.5 h after Gd-DTPA(2-) injection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamic core-shell nanoparticles have received increasing attention in recent years. This paper presents a detailed study of Au-Hg nanoalloys, whose composing elements show a large difference in cohesive energy. A simple method to prepare Au@Hg particles with precise control over the composition up to 15 atom% mercury is introduced, based on reacting a citrate stabilized gold sol with elemental mercury. Transmission electron microscopy shows an increase of particle size with increasing mercury content and, together with X-ray powder diffraction, points towards the presence of a core-shell structure with a gold core surrounded by an Au-Hg solid solution layer. The amalgamation process is described by pseudo-zero-order reaction kinetics, which indicates slow dissolution of mercury in water as the rate determining step, followed by fast scavenging by nanoparticles in solution. Once adsorbed at the surface, slow diffusion of Hg into the particle lattice occurs, to a depth of ca. 3 nm, independent of Hg concentration. Discrete dipole approximation calculations relate the UV-vis spectra to the microscopic details of the nanoalloy structure. Segregation energies and metal distribution in the nanoalloys were modeled by density functional theory calculations. The results indicate slow metal interdiffusion at the nanoscale, which has important implications for synthetic methods aimed at core-shell particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytomegalovirus (CMV) reactivation in the retina of immunocompromized patients is a cause of significant morbidity as it can lead to blindness. The adaptive immune response is critical in controlling murine CMV (MCMV) infection in MCMV-susceptible mouse strains. CD8(+) T cells limit systemic viral replication in the acute phase of infection and are essential to contain latent virus. In this study, we provide the first evaluation of the kinetics of anti-viral T-cell responses after subretinal infection with MCMV. The acute response was characterized by a rapid expansion phase, with infiltration of CD8(+) T cells into the infected retina, followed by a contraction phase. MCMV-specific T cells displayed biphasic kinetics with a first peak at day 12 and contraction by day 18 followed by sustained recruitment of these cells into the retina at later time points post-infection. MCMV-specific CD8(+) T cells were also observed in the draining cervical lymph nodes and the spleen. Presentation of viral epitopes and activation of CD8(+) T cells was widespread and could be detected in the spleen and the draining lymph nodes, but not in the retina or iris. Moreover, after intraocular infection, antigen-specific cytotoxic activity was detectable and exhibited kinetics equivalent to those observed after intraperitoneal infection with the same viral dose. These data provide novel insights of how and where immune responses are initiated when viral antigen is present in the subretinal space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The antiinflammatory agent curcumin (diferuloylmethane) has a potential to mitigate cancer therapy-induced mucositis. We assessed the in vitro extent of its bactericidal activity and determined the kinetics of its antiinflammatory effect on pharyngeal cells. Bactericidal activity was assessed using the LIVE/DEAD® Kit after 4 h of exposure to curcumin (50-200 μM) in 18 oropharyngeal species commonly associated with bacteremia in febrile neutropenia. Moraxella catarrhalis or its outer membrane vesicles were used to determine the inhibitory effect of curcumin on bacteria-induced proinflammatory activity as determined by cytokine release into the supernatant of Detroit 562 pharyngeal cells using the Luminex® xMAP® technology. Curcumin exerted a concentration-dependent bactericidal effect on all 18 species tested. After 4 h at 200 μM, 12 species tested were completely killed. Preincubation of Detroit cells with 200 μM curcumin for 5 to 60 min resulted in complete suppression of the release of tumor necrosis factor-α, interleukin (IL)-6, IL-8, monocyte chemoattractant protein 1, granulocyte macrophage-colony stimulating factor, and vascular endothelial growth factor. Fibroblast growth factor-2 and interferon-γ were not affected. Repetitive exposure to curcumin resulted in repetitive suppression of cytokine/chemokine expression lasting from 4 to 6 h. Through reduction of oral microbial density as well as suppression of inflammation cascades curcumin may prevent cancer therapy-induced oral mucositis, e.g., when applied as multiple daily mouth washes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An enantioselective CE method was used to identify the ability of CYP450 enzymes and their stereoselectivity in catalyzing the transformation of propafenone (PPF) to 5-hydroxy-propafenone (5OH-PPF) and N-despropyl-propafenone (NOR-PPF). Using in vitro incubations with single CYP450 enzymes (SUPERSOMES), 5OH-PPF is shown to be selectively produced by CYP2D6 and N-dealkylation is demonstrated to be mediated by CYP2D6, CYP3A4, CYP1A2, and CYP1A1. For the elucidation of kinetic aspects of the metabolism with CYP2D6 and CYP3A4, incubations with individual PPF enantiomers and racemic PPF were investigated. With the exception of the dealkylation in presence of R-PPF only, which can be described by the Michaelis-Menten model, all CYP2D6-induced reactions were found to follow autoactivation kinetics. For CYP3A4, all NOR-PPF enantiomer formation rates as function of PPF enantiomer concentration were determined to follow substrate inhibition kinetics. The formation of NOR-PPF by the different enzymes is stereoselective and is reduced significantly when racemic PPF is incubated. Clearance values obtained for CYP3A4 dealkylation are stereoselective whereas those of CYP2D6 hydroxylation are not. This paper reports the first investigation of the PPF hydroxylation and dealkylation kinetics by the CYP2D6 enzyme and represents the first report in which enantioselective CE data provide the complete in vitro kinetics of metabolic steps of a drug.