15 resultados para Discrete ordinates
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Purpose Recently, multiple clinical trials have demonstrated improved outcomes in patients with metastatic colorectal cancer. This study investigated if the improved survival is race dependent. Patients and Methods Overall and cancer-specific survival of 77,490 White and Black patients with metastatic colorectal cancer from the 1988–2008 Surveillance Epidemiology and End Results registry were compared using unadjusted and multivariable adjusted Cox proportional hazard regression as well as competing risk analyses. Results Median age was 69 years, 47.4 % were female and 86.0 % White. Median survival was 11 months overall, with an overall increase from 8 to 14 months between 1988 and 2008. Overall survival increased from 8 to 14 months for White, and from 6 to 13 months for Black patients. After multivariable adjustment, the following parameters were associated with better survival: White, female, younger, better educated and married patients, patients with higher income and living in urban areas, patients with rectosigmoid junction and rectal cancer, undergoing cancer-directed surgery, having well/moderately differentiated, and N0 tumors (p<0.05 for all covariates). Discrepancies in overall survival based on race did not change significantly over time; however, there was a significant decrease of cancer-specific survival discrepancies over time between White and Black patients with a hazard ratio of 0.995 (95 % confidence interval 0.991–1.000) per year (p=0.03). Conclusion A clinically relevant overall survival increase was found from 1988 to 2008 in this population-based analysis for both White and Black patients with metastatic colorectal cancer. Although both White and Black patients benefitted from this improvement, a slight discrepancy between the two groups remained.
Resumo:
Intestinal dendritic cells (DCs) are believed to sample and present commensal bacteria to the gut-associated immune system to maintain immune homeostasis. How antigen sampling pathways handle intestinal pathogens remains elusive. We present a murine colitogenic Salmonella infection model that is highly dependent on DCs. Conditional DC depletion experiments revealed that intestinal virulence of S. Typhimurium SL1344 DeltainvG mutant lacking a functional type 3 secretion system-1 (DeltainvG)critically required DCs for invasion across the epithelium. The DC-dependency was limited to the early phase of infection when bacteria colocalized with CD11c(+)CX3CR1(+) mucosal DCs. At later stages, the bacteria became associated with other (CD11c(-)CX3CR1(-)) lamina propria cells, DC depletion no longer attenuated the pathology, and a MyD88-dependent mucosal inflammation was initiated. Using bone marrow chimeric mice, we showed that the MyD88 signaling within hematopoietic cells, which are distinct from DCs, was required and sufficient for induction of the colitis. Moreover, MyD88-deficient DCs supported transepithelial uptake of the bacteria and the induction of MyD88-dependent colitis. These results establish that pathogen sampling by DCs is a discrete, and MyD88-independent, step during the initiation of a mucosal innate immune response to bacterial infection in vivo.
Resumo:
The Sustainable Development Goals (SDGs) present the new global agenda by the United Nations for the next 15 years from 2016 to 2030. In this research paper we examine how digital resources may contribute to the achievement of the SDGs. Based on a broad literature review we argue functional digital sustainability supports the SDGs while discrete digital sustainability is required to create and progress knowledge necessary to advance the SDGs. First we explain the perspectives of functional and discrete sustainability; secondly we map the two perspectives onto the 17 SDGs with examples incorporating both perspectives of digital sustainability. We conclude that digital sustainability should encompass both perspectives in order to exploit the full potential of information systems in regard to sustainability transformations.
Resumo:
The skin of an adult human contains about 20 billion memory T cells. Epithelial barrier tissues are infiltrated by a combination of resident and recirculating T cells in mice, but the relative proportions and functional activities of resident versus recirculating T cells have not been evaluated in human skin. We discriminated resident from recirculating T cells in human-engrafted mice and lymphoma patients using alemtuzumab, a medication that depletes recirculating T cells from skin, and then analyzed these T cell populations in healthy human skin. All nonrecirculating resident memory T cells (TRM) expressed CD69, but most were CD4(+), CD103(-), and located in the dermis, in contrast to studies in mice. Both CD4(+) and CD8(+) CD103(+) TRM were enriched in the epidermis, had potent effector functions, and had a limited proliferative capacity compared to CD103(-) TRM. TRM of both types had more potent effector functions than recirculating T cells. We observed two distinct populations of recirculating T cells, CCR7(+)/L-selectin(+) central memory T cells (TCM) and CCR7(+)/L-selectin(-) T cells, which we term migratory memory T cells (TMM). Circulating skin-tropic TMM were intermediate in cytokine production between TCM and effector memory T cells. In patients with cutaneous T cell lymphoma, malignant TCM and TMM induced distinct inflammatory skin lesions, and TMM were depleted more slowly from skin after alemtuzumab, suggesting that TMM may recirculate more slowly. In summary, human skin is protected by four functionally distinct populations of T cells, two resident and two recirculating, with differing territories of migration and distinct functional activities.