26 resultados para Dirichlet Regression compositional model.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Background: ;Rates of molecular evolution vary widely among species. While significant deviations from molecular clock have been found in many taxa, effects of life histories on molecular evolution are not fully understood. In plants, annual/perennial life history traits have long been suspected to influence the evolutionary rates at the molecular level. To date, however, the number of genes investigated on this subject is limited and the conclusions are mixed. To evaluate the possible heterogeneity in evolutionary rates between annual and perennial plants at the genomic level, we investigated 85 nuclear housekeeping genes, 10 non-housekeeping families, and 34 chloroplast;genes using the genomic data from model plants including Arabidopsis thaliana and Medicago truncatula for annuals and grape (Vitis vinifera) and popular (Populus trichocarpa) for perennials.;Results: ;According to the cross-comparisons among the four species, 74-82% of the nuclear genes and 71-97% of the chloroplast genes suggested higher rates of molecular evolution in the two annuals than those in the two perennials. The significant heterogeneity in evolutionary rate between annuals and perennials was consistently found both in nonsynonymous sites and synonymous sites. While a linear correlation of evolutionary rates in orthologous genes between species was observed in nonsynonymous sites, the correlation was weak or invisible in synonymous sites. This tendency was clearer in nuclear genes than in chloroplast genes, in which the overall;evolutionary rate was small. The slope of the regression line was consistently lower than unity, further confirming the higher evolutionary rate in annuals at the genomic level.;Conclusions: ;The higher evolutionary rate in annuals than in perennials appears to be a universal phenomenon both in nuclear and chloroplast genomes in the four dicot model plants we investigated. Therefore, such heterogeneity in evolutionary rate should result from factors that have genome-wide influence, most likely those associated with annual/perennial life history. Although we acknowledge current limitations of this kind of study, mainly due to a small sample size available and a distant taxonomic relationship of the model organisms, our results indicate that the genome-wide survey is a promising approach toward further understanding of the;mechanism determining the molecular evolutionary rate at the genomic level.
Resumo:
Indoor radon is regularly measured in Switzerland. However, a nationwide model to predict residential radon levels has not been developed. The aim of this study was to develop a prediction model to assess indoor radon concentrations in Switzerland. The model was based on 44,631 measurements from the nationwide Swiss radon database collected between 1994 and 2004. Of these, 80% randomly selected measurements were used for model development and the remaining 20% for an independent model validation. A multivariable log-linear regression model was fitted and relevant predictors selected according to evidence from the literature, the adjusted R², the Akaike's information criterion (AIC), and the Bayesian information criterion (BIC). The prediction model was evaluated by calculating Spearman rank correlation between measured and predicted values. Additionally, the predicted values were categorised into three categories (50th, 50th-90th and 90th percentile) and compared with measured categories using a weighted Kappa statistic. The most relevant predictors for indoor radon levels were tectonic units and year of construction of the building, followed by soil texture, degree of urbanisation, floor of the building where the measurement was taken and housing type (P-values <0.001 for all). Mean predicted radon values (geometric mean) were 66 Bq/m³ (interquartile range 40-111 Bq/m³) in the lowest exposure category, 126 Bq/m³ (69-215 Bq/m³) in the medium category, and 219 Bq/m³ (108-427 Bq/m³) in the highest category. Spearman correlation between predictions and measurements was 0.45 (95%-CI: 0.44; 0.46) for the development dataset and 0.44 (95%-CI: 0.42; 0.46) for the validation dataset. Kappa coefficients were 0.31 for the development and 0.30 for the validation dataset, respectively. The model explained 20% overall variability (adjusted R²). In conclusion, this residential radon prediction model, based on a large number of measurements, was demonstrated to be robust through validation with an independent dataset. The model is appropriate for predicting radon level exposure of the Swiss population in epidemiological research. Nevertheless, some exposure misclassification and regression to the mean is unavoidable and should be taken into account in future applications of the model.
Resumo:
OBJECTIVES: This paper is concerned with checking goodness-of-fit of binary logistic regression models. For the practitioners of data analysis, the broad classes of procedures for checking goodness-of-fit available in the literature are described. The challenges of model checking in the context of binary logistic regression are reviewed. As a viable solution, a simple graphical procedure for checking goodness-of-fit is proposed. METHODS: The graphical procedure proposed relies on pieces of information available from any logistic analysis; the focus is on combining and presenting these in an informative way. RESULTS: The information gained using this approach is presented with three examples. In the discussion, the proposed method is put into context and compared with other graphical procedures for checking goodness-of-fit of binary logistic models available in the literature. CONCLUSION: A simple graphical method can significantly improve the understanding of any logistic regression analysis and help to prevent faulty conclusions.
Resumo:
Radio frequency electromagnetic fields (RF-EMF) in our daily life are caused by numerous sources such as fixed site transmitters (e.g. mobile phone base stations) or indoor devices (e.g. cordless phones). The objective of this study was to develop a prediction model which can be used to predict mean RF-EMF exposure from different sources for a large study population in epidemiological research. We collected personal RF-EMF exposure measurements of 166 volunteers from Basel, Switzerland, by means of portable exposure meters, which were carried during one week. For a validation study we repeated exposure measurements of 31 study participants 21 weeks after the measurements of the first week on average. These second measurements were not used for the model development. We used two data sources as exposure predictors: 1) a questionnaire on potentially exposure relevant characteristics and behaviors and 2) modeled RF-EMF from fixed site transmitters (mobile phone base stations, broadcast transmitters) at the participants' place of residence using a geospatial propagation model. Relevant exposure predictors, which were identified by means of multiple regression analysis, were the modeled RF-EMF at the participants' home from the propagation model, housing characteristics, ownership of communication devices (wireless LAN, mobile and cordless phones) and behavioral aspects such as amount of time spent in public transports. The proportion of variance explained (R2) by the final model was 0.52. The analysis of the agreement between calculated and measured RF-EMF showed a sensitivity of 0.56 and a specificity of 0.95 (cut-off: 90th percentile). In the validation study, the sensitivity and specificity of the model were 0.67 and 0.96, respectively. We could demonstrate that it is feasible to model personal RF-EMF exposure. Most importantly, our validation study suggests that the model can be used to assess average exposure over several months.
Resumo:
PURPOSE: To compare dynamic contrast material-enhanced magnetic resonance (MR) imaging and diffusion-weighted MR imaging for noninvasive evaluation of early and late effects of a vascular targeting agent in a rat tumor model. MATERIALS AND METHODS: The study protocol was approved by the local ethics committee for animal care and use. Thirteen rats with one rhabdomyosarcoma in each flank (26 tumors) underwent dynamic contrast-enhanced imaging and diffusion-weighted echo-planar imaging in a 1.5-T MR unit before intraperitoneal injection of combretastatin A4 phosphate and at early (1 and 6 hours) and later (2 and 9 days) follow-up examinations after the injection. Histopathologic examination was performed at each time point. The apparent diffusion coefficient (ADC) of each tumor was calculated separately on the basis of diffusion-weighted images obtained with low b gradient values (ADC(low); b = 0, 50, and 100 sec/mm(2)) and high b gradient values (ADC(high); b = 500, 750, and 1000 sec/mm(2)). The difference between ADC(low) and ADC(high) was used as a surrogate measure of tissue perfusion (ADC(low) - ADC(high) = ADC(perf)). From the dynamic contrast-enhanced MR images, the volume transfer constant k and the initial slope of the contrast enhancement-time curve were calculated. For statistical analyses, a paired two-tailed Student t test and linear regression analysis were used. RESULTS: Early after administration of combretastatin, all perfusion-related parameters (k, initial slope, and ADC(perf)) decreased significantly (P < .001); at 9 days after combretastatin administration, they increased significantly (P < .001). Changes in ADC(perf) were correlated with changes in k (R(2) = 0.46, P < .001) and the initial slope (R(2) = 0.67, P < .001). CONCLUSION: Both dynamic contrast-enhanced MR imaging and diffusion-weighted MR imaging allow monitoring of perfusion changes induced by vascular targeting agents in tumors. Diffusion-weighted imaging provides additional information about intratumoral cell viability versus necrosis after administration of combretastatin.
Resumo:
PURPOSE To explore whether population-related pharmacogenomics contribute to differences in patient outcomes between clinical trials performed in Japan and the United States, given similar study designs, eligibility criteria, staging, and treatment regimens. METHODS We prospectively designed and conducted three phase III trials (Four-Arm Cooperative Study, LC00-03, and S0003) in advanced-stage, non-small-cell lung cancer, each with a common arm of paclitaxel plus carboplatin. Genomic DNA was collected from patients in LC00-03 and S0003 who received paclitaxel (225 mg/m(2)) and carboplatin (area under the concentration-time curve, 6). Genotypic variants of CYP3A4, CYP3A5, CYP2C8, NR1I2-206, ABCB1, ERCC1, and ERCC2 were analyzed by pyrosequencing or by PCR restriction fragment length polymorphism. Results were assessed by Cox model for survival and by logistic regression for response and toxicity. Results Clinical results were similar in the two Japanese trials, and were significantly different from the US trial, for survival, neutropenia, febrile neutropenia, and anemia. There was a significant difference between Japanese and US patients in genotypic distribution for CYP3A4*1B (P = .01), CYP3A5*3C (P = .03), ERCC1 118 (P < .0001), ERCC2 K751Q (P < .001), and CYP2C8 R139K (P = .01). Genotypic associations were observed between CYP3A4*1B for progression-free survival (hazard ratio [HR], 0.36; 95% CI, 0.14 to 0.94; P = .04) and ERCC2 K751Q for response (HR, 0.33; 95% CI, 0.13 to 0.83; P = .02). For grade 4 neutropenia, the HR for ABCB1 3425C-->T was 1.84 (95% CI, 0.77 to 4.48; P = .19). CONCLUSION Differences in allelic distribution for genes involved in paclitaxel disposition or DNA repair were observed between Japanese and US patients. In an exploratory analysis, genotype-related associations with patient outcomes were observed for CYP3A4*1B and ERCC2 K751Q. This common-arm approach facilitates the prospective study of population-related pharmacogenomics in which ethnic differences in antineoplastic drug disposition are anticipated.
Resumo:
IMPORTANCE Because effective interventions to reduce hospital readmissions are often expensive to implement, a score to predict potentially avoidable readmissions may help target the patients most likely to benefit. OBJECTIVE To derive and internally validate a prediction model for potentially avoidable 30-day hospital readmissions in medical patients using administrative and clinical data readily available prior to discharge. DESIGN Retrospective cohort study. SETTING Academic medical center in Boston, Massachusetts. PARTICIPANTS All patient discharges from any medical services between July 1, 2009, and June 30, 2010. MAIN OUTCOME MEASURES Potentially avoidable 30-day readmissions to 3 hospitals of the Partners HealthCare network were identified using a validated computerized algorithm based on administrative data (SQLape). A simple score was developed using multivariable logistic regression, with two-thirds of the sample randomly selected as the derivation cohort and one-third as the validation cohort. RESULTS Among 10 731 eligible discharges, 2398 discharges (22.3%) were followed by a 30-day readmission, of which 879 (8.5% of all discharges) were identified as potentially avoidable. The prediction score identified 7 independent factors, referred to as the HOSPITAL score: h emoglobin at discharge, discharge from an o ncology service, s odium level at discharge, p rocedure during the index admission, i ndex t ype of admission, number of a dmissions during the last 12 months, and l ength of stay. In the validation set, 26.7% of the patients were classified as high risk, with an estimated potentially avoidable readmission risk of 18.0% (observed, 18.2%). The HOSPITAL score had fair discriminatory power (C statistic, 0.71) and had good calibration. CONCLUSIONS AND RELEVANCE This simple prediction model identifies before discharge the risk of potentially avoidable 30-day readmission in medical patients. This score has potential to easily identify patients who may need more intensive transitional care interventions.
Resumo:
This paper studied two different regression techniques for pelvic shape prediction, i.e., the partial least square regression (PLSR) and the principal component regression (PCR). Three different predictors such as surface landmarks, morphological parameters, or surface models of neighboring structures were used in a cross-validation study to predict the pelvic shape. Results obtained from applying these two different regression techniques were compared to the population mean model. In almost all the prediction experiments, both regression techniques unanimously generated better results than the population mean model, while the difference on prediction accuracy between these two regression methods is not statistically significant (α=0.01).
Resumo:
Reconstruction of shape and intensity from 2D x-ray images has drawn more and more attentions. Previously introduced work suffers from the long computing time due to its iterative optimization characteristics and the requirement of generating digitally reconstructed radiographs within each iteration. In this paper, we propose a novel method which uses a patient-specific 3D surface model reconstructed from 2D x-ray images as a surrogate to get a patient-specific volumetric intensity reconstruction via partial least squares regression. No DRR generation is needed. The method was validated on 20 cadaveric proximal femurs by performing a leave-one-out study. Qualitative and quantitative results demonstrated the efficacy of the present method. Compared to the existing work, the present method has the advantage of much shorter computing time and can be applied to both DXA images as well as conventional x-ray images, which may hold the potentials to be applied to clinical routine task such as total hip arthroplasty (THA).
Resumo:
In this paper, we propose a fully automatic, robust approach for segmenting proximal femur in conventional X-ray images. Our method is based on hierarchical landmark detection by random forest regression, where the detection results of 22 global landmarks are used to do the spatial normalization, and the detection results of the 59 local landmarks serve as the image cue for instantiation of a statistical shape model of the proximal femur. To detect landmarks in both levels, we use multi-resolution HoG (Histogram of Oriented Gradients) as features which can achieve better accuracy and robustness. The efficacy of the present method is demonstrated by experiments conducted on 150 clinical x-ray images. It was found that the present method could achieve an average point-to-curve error of 2.0 mm and that the present method was robust to low image contrast, noise and occlusions caused by implants.
Resumo:
Ecosystems are faced with high rates of species loss which has consequences for their functions and services. To assess the effects of plant species diversity on the nitrogen (N) cycle, we developed a model for monthly mean nitrate (NO3-N) concentrations in soil solution in 0-30 cm mineral soil depth using plant species and functional group richness and functional composition as drivers and assessing the effects of conversion of arable land to grassland, spatially heterogeneous soil properties, and climate. We used monthly mean NO3-N concentrations from 62 plots of a grassland plant diversity experiment from 2003 to 2006. Plant species richness (1-60) and functional group composition (1-4 functional groups: legumes, grasses, non-leguminous tall herbs, non-leguminous small herbs) were manipulated in a factorial design. Plant community composition, time since conversion from arable land to grassland, soil texture, and climate data (precipitation, soil moisture, air and soil temperature) were used to develop one general Bayesian multiple regression model for the 62 plots to allow an in-depth evaluation using the experimental design. The model simulated NO3-N concentrations with an overall Bayesian coefficient of determination of 0.48. The temporal course of NO3-N concentrations was simulated differently well for the individual plots with a maximum plot-specific Nash-Sutcliffe Efficiency of 0.57. The model shows that NO3-N concentrations decrease with species richness, but this relation reverses if more than approx. 25 % of legume species are included in the mixture. Presence of legumes increases and presence of grasses decreases NO3-N concentrations compared to mixtures containing only small and tall herbs. Altogether, our model shows that there is a strong influence of plant community composition on NO3-N concentrations.
Resumo:
We present an independent calibration model for the determination of biogenic silica (BSi) in sediments, developed from analysis of synthetic sediment mixtures and application of Fourier transform infrared spectroscopy (FTIRS) and partial least squares regression (PLSR) modeling. In contrast to current FTIRS applications for quantifying BSi, this new calibration is independent from conventional wet-chemical techniques and their associated measurement uncertainties. This approach also removes the need for developing internal calibrations between the two methods for individual sediments records. For the independent calibration, we produced six series of different synthetic sediment mixtures using two purified diatom extracts, with one extract mixed with quartz sand, calcite, 60/40 quartz/calcite and two different natural sediments, and a second extract mixed with one of the natural sediments. A total of 306 samples—51 samples per series—yielded BSi contents ranging from 0 to 100 %. The resulting PLSR calibration model between the FTIR spectral information and the defined BSi concentration of the synthetic sediment mixtures exhibits a strong cross-validated correlation ( R2cv = 0.97) and a low root-mean square error of cross-validation (RMSECV = 4.7 %). Application of the independent calibration to natural lacustrine and marine sediments yields robust BSi reconstructions. At present, the synthetic mixtures do not include the variation in organic matter that occurs in natural samples, which may explain the somewhat lower prediction accuracy of the calibration model for organic-rich samples.
Resumo:
BACKGROUND Recently, histopathological tumour regression, prevalence of signet ring cells, and localisation were reported as prognostic factors in neoadjuvantly treated oesophagogastric (junctional and gastric) cancer. This exploratory retrospective study analyses independent prognostic factors within a large patient cohort after preoperative chemotherapy including clinical and histopathological factors. METHODS In all, 850 patients presenting with oesophagogastric cancer staged cT3/4 Nany cM0/x were treated with neoadjuvant chemotherapy followed by resection in two academic centres. Patient data were documented in a prospective database and retrospectively analysed. RESULTS Of all factors prognostic on univariate analysis, only clinical response, complications, ypTNM stage, and R category were independently prognostic (P<0.01) on multivariate analysis. Tumour localisation and signet ring cells were independently prognostic only when investigator-dependent clinical response evaluation was excluded from the multivariate model. Histopathological tumour regression correlates with tumour grading, Laurén classification, clinical response, ypT, ypN, and R categories but was not identified as an independent prognostic factor. Within R0-resected patients only surgical complications and ypTNM stage were independent prognostic factors. CONCLUSIONS Only established prognostic factors like ypTNM stage, R category, and complications were identified as independent prognostic factors in resected patients after neoadjuvant chemotherapy. In contrast, histopathological tumour regression was not found as an independent prognostic marker.