4 resultados para Dimensions changes-kindergarden
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Aims: To assess observations with multimodality imaging of the Absorb bioresorbable everolimus-eluting vascular scaffold performed in two consecutive cohorts of patients who were serially investigated either at 6 and 24 months or at 12 and 36 months. Methods and results: In the ABSORB multicentre single-arm trial, 45 patients (cohort B1) and 56 patients (cohort B2) underwent serial invasive imaging, specifically quantitative coronary angiography (QCA), intravascular ultrasound (IVUS), radiofrequency backscattering (IVUS-VH) and optical coherence tomography (OCT). Between one and three years, late luminal loss remained unchanged (6 months: 0.19 mm, 1 year: 0.27 mm, 2 years: 0.27 mm, 3 years: 0.29 mm) and the in-segment angiographic restenosis rate for the entire cohort B (n=101) at three years was 6%. On IVUS, mean lumen, scaffold, plaque and vessel area showed enlargement up to two years. Mean lumen and scaffold area remained stable between two and three years whereas significant reduction in plaque behind the struts occurred with a trend toward adaptive restrictive remodelling of EEM. Hyperechogenicity of the vessel wall, a surrogate of the bioresorption process, decreased from 23.1% to 10.4% with a reduction of radiofrequency backscattering for dense calcium and necrotic core. At three years, the count of strut cores detected on OCT increased significantly, probably reflecting the dismantling of the scaffold; 98% of struts were covered. In the entire cohort B (n=101), the three-year major adverse cardiac event rate was 10.0% without any scaffold thrombosis. Conclusions: The current investigation demonstrated the dynamics of vessel wall changes after implantation of a bioresorbable scaffold, resulting at three years in stable luminal dimensions, a low restenosis rate and a low clinical major adverse cardiac events rate.
Resumo:
OBJECTIVES To identify the timing of significant arch dimensional increases during orthodontic alignment involving round and rectangular nickel-titanium (NiTi) wires and rectangular stainless steel (SS). A secondary aim was to compare the timing of changes occurring with conventional and self-ligating fixed appliance systems. METHODS In this non-primary publication, additional data from a multicenter randomised trial initially involving 96 patients, aged 16 years and above, were analysed. The main pre-specified outcome measures were the magnitude and timing of maxillary intercanine, interpremolar, and intermolar dimensions. Each participant underwent alignment with a standard Damon (Ormco, Orange, CA) wire sequence for a minimum of 34 weeks. Blinding of clinicians and patients was not possible; however, outcome assessors and data analysts were kept blind to the appliance type during data analysis. RESULTS Complete data were obtained from 71 subjects. Significant arch dimensional changes were observed relatively early in treatment. In particular, changes in maxillary inter-first and second premolar dimensions occurred after alignment with an 0.014in. NiTi wire (P<0.05). No statistical differences in transverse dimensions were found between rectangular NiTi and working SS wires for each transverse dimension (P>0.05). Bracket type had no significant effect on the timing of the transverse dimensional changes. CONCLUSIONS Arch dimensional changes were found to occur relatively early in treatment, irrespective of the appliance type. Nickel-titanium wires may have a more profound effect on transverse dimensions than previously believed. CLINICAL SIGNIFICANCE On the basis of this research orthodontic expansion may occur relatively early in treatment. Nickel-titanium wires may have a more profound effect on transverse dimensions than previously believed.
Resumo:
This paper discusses the effects of global change in African mountains, with the example of Mount Kenya. The geographical focus is the northwestern, semi-arid foot zone of the mountain (Laikipia District). Over the past 50 years, this area has experienced rapid and profound transformation, the respective processes of which are all linked to global change. The main driving forces behind these processes have been political and economic in nature. To these an environmental change factor has been added in recent years – climate change. After introducing the area of research, the paper presents three dimensions of global change that are manifested in the region and largely shape its development: Socio-political change, economic change, environmental change. For the regions northwest of Mount Kenya, climate models predict important changes in rainfall distribution that will have a profound impact on freshwater availability and management. The results presented here are based on research undertaken northwest of Mount Kenya within the framework of a series of long-term Kenyan-Swiss research programmes that began in the early 1980s.