6 resultados para Digital signal processor
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
OBJECTIVES To establish whether complex signal processing is beneficial for users of bone anchored hearing aids. METHODS Review and analysis of two studies from our own group, each comparing a speech processor with basic digital signal processing (either Baha Divino or Baha Intenso) and a processor with complex digital signal processing (either Baha BP100 or Baha BP110 power). The main differences between basic and complex signal processing are the number of audiologist accessible frequency channels and the availability and complexity of the directional multi-microphone noise reduction and loudness compression systems. RESULTS Both studies show a small, statistically non-significant improvement of speech understanding in quiet with the complex digital signal processing. The average improvement for speech in noise is +0.9 dB, if speech and noise are emitted both from the front of the listener. If noise is emitted from the rear and speech from the front of the listener, the advantage of the devices with complex digital signal processing as opposed to those with basic signal processing increases, on average, to +3.2 dB (range +2.3 … +5.1 dB, p ≤ 0.0032). DISCUSSION Complex digital signal processing does indeed improve speech understanding, especially in noise coming from the rear. This finding has been supported by another study, which has been published recently by a different research group. CONCLUSIONS When compared to basic digital signal processing, complex digital signal processing can increase speech understanding of users of bone anchored hearing aids. The benefit is most significant for speech understanding in noise.
Resumo:
Reflected at any level of organization of the central nervous system, most of the processes ranging from ion channels to neuronal networks occur in a closed loop, where the input to the system depends on its output. In contrast, most in vitro preparations and experimental protocols operate autonomously, and do not depend on the output of the studied system. Thanks to the progress in digital signal processing and real-time computing, it is now possible to artificially close the loop and investigate biophysical processes and mechanisms under increased realism. In this contribution, we review some of the most relevant examples of a new trend in in vitro electrophysiology, ranging from the use of dynamic-clamp to multi-electrode distributed feedback stimulation. We are convinced these represents the beginning of new frontiers for the in vitro investigation of the brain, promising to open the still existing borders between theoretical and experimental approaches while taking advantage of cutting edge technologies.
Resumo:
Electroencephalograms (EEG) are often contaminated with high amplitude artifacts limiting the usability of data. Methods that reduce these artifacts are often restricted to certain types of artifacts, require manual interaction or large training data sets. Within this paper we introduce a novel method, which is able to eliminate many different types of artifacts without manual intervention. The algorithm first decomposes the signal into different sub-band signals in order to isolate different types of artifacts into specific frequency bands. After signal decomposition with principal component analysis (PCA) an adaptive threshold is applied to eliminate components with high variance corresponding to the dominant artifact activity. Our results show that the algorithm is able to significantly reduce artifacts while preserving the EEG activity. Parameters for the algorithm do not have to be identified for every patient individually making the method a good candidate for preprocessing in automatic seizure detection and prediction algorithms.
Resumo:
In this paper, the well-known method of frames approach to the signal decomposition problem is reformulated as a certain bilevel goal-attainment linear least squares problem. As a consequence, a numerically robust variant of the method, named approximating method of frames, is proposed on the basis of a certain minimal Euclidean norm approximating splitting pseudo-iteration-wise method.
Resumo:
Long-term electrocardiogram (ECG) often suffers from relevant noise. Baseline wander in particular is pronounced in ECG recordings using dry or esophageal electrodes, which are dedicated for prolonged registration. While analog high-pass filters introduce phase distortions, reliable offline filtering of the baseline wander implies a computational burden that has to be put in relation to the increase in signal-to-baseline ratio (SBR). Here we present a graphics processor unit (GPU) based parallelization method to speed up offline baseline wander filter algorithms, namely the wavelet, finite, and infinite impulse response, moving mean, and moving median filter. Individual filter parameters were optimized with respect to the SBR increase based on ECGs from the Physionet database superimposed to auto-regressive modeled, real baseline wander. A Monte-Carlo simulation showed that for low input SBR the moving median filter outperforms any other method but negatively affects ECG wave detection. In contrast, the infinite impulse response filter is preferred in case of high input SBR. However, the parallelized wavelet filter is processed 500 and 4 times faster than these two algorithms on the GPU, respectively, and offers superior baseline wander suppression in low SBR situations. Using a signal segment of 64 mega samples that is filtered as entire unit, wavelet filtering of a 7-day high-resolution ECG is computed within less than 3 seconds. Taking the high filtering speed into account, the GPU wavelet filter is the most efficient method to remove baseline wander present in long-term ECGs, with which computational burden can be strongly reduced.
Resumo:
INTRODUCTION The Rondo is a single-unit cochlear implant (CI) audio processor comprising the identical components as its behind-the-ear predecessor, the Opus 2. An interchange of the Opus 2 with the Rondo leads to a shift of the microphone position toward the back of the head. This study aimed to investigate the influence of the Rondo wearing position on speech intelligibility in noise. METHODS Speech intelligibility in noise was measured in 4 spatial configurations with 12 experienced CI users using the German adaptive Oldenburg sentence test. A physical model and a numerical model were used to enable a comparison of the observations. RESULTS No statistically significant differences of the speech intelligibility were found in the situations in which the signal came from the front and the noise came from the frontal, ipsilateral, or contralateral side. The signal-to-noise ratio (SNR) was significantly better with the Opus 2 in the case with the noise presented from the back (4.4 dB, p < 0.001). The differences in the SNR were significantly worse with the Rondo processors placed further behind the ear than closer to the ear. CONCLUSION The study indicates that CI users with the receiver/stimulator implanted in positions further behind the ear are expected to have higher difficulties in noisy situations when wearing the single-unit audio processor.