7 resultados para Digital image classification
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Morphometric investigations using a point and intersection counting strategy in the lung often are not able to reveal the full set of morphologic changes. This happens particularly when structural modifications are not expressed in terms of volume density changes and when rough and fine surface density alterations cancel each other at different magnifications. Making use of digital image processing, we present a methodological approach that allows to easily and quickly quantify changes of the geometrical properties of the parenchymal lung structure and reflects closely the visual appreciation of the changes. Randomly sampled digital images from light microscopic sections of lung parenchyma are filtered, binarized, and skeletonized. The lung septa are thus represented as a single-pixel wide line network with nodal points and end points and the corresponding internodal and end segments. By automatically counting the number of points and measuring the lengths of the skeletal segments, the lung architecture can be characterized and very subtle structural changes can be detected. This new methodological approach to lung structure analysis is highly sensitive to morphological changes in the parenchyma: it detected highly significant quantitative alterations in the structure of lungs of rats treated with a glucocorticoid hormone, where the classical morphometry had partly failed.
Resumo:
Glucocorticoids (GC) are successfully applied in neonatology to improve lung maturation in preterm born babies. Animal studies show that GC can also impair lung development. In this investigation, we used a new approach based on digital image analysis. Microscopic images of lung parenchyma were skeletonised and the geometrical properties of the septal network characterised by analysing the 'skeletal' parameters. Inhibition of the process of alveolarisation after extensive administration of small doses of GC in newborn rats was confirmed by significant changes in the 'skeletal' parameters. The induced structural changes in the lung parenchyma were still present after 60 days in adult rats, clearly indicating a long lasting or even definitive impairment of lung development and maturation caused by GC. Conclusion: digital image analysis and skeletonisation proved to be a highly suited approach to assess structural changes in lung parenchyma.
Resumo:
A laser scanning microscope collects information from a thin, focal plane and ignores out of focus information. During the past few years it has become the standard imaging method to characterise cellular morphology and structures in static as well as in living samples. Laser scanning microscopy combined with digital image restoration is an excellent tool for analysing the cellular cytoarchitecture, expression of specific proteins and interactions of various cell types, thus defining valid criteria for the optimisation of cell culture models. We have used this tool to establish and evaluate a three dimensional model of the human epithelial airway wall.
Resumo:
In this paper we compare the performance of two image classification paradigms (object- and pixel-based) for creating a land cover map of Asmara, the capital of Eritrea and its surrounding areas using a Landsat ETM+ imagery acquired in January 2000. The image classification methods used were maximum likelihood for the pixel-based approach and Bhattacharyya distance for the object-oriented approach available in, respectively, ArcGIS and SPRING software packages. Advantages and limitations of both approaches are presented and discussed. Classifications outputs were assessed using overall accuracy and Kappa indices. Pixel- and object-based classification methods result in an overall accuracy of 78% and 85%, respectively. The Kappa coefficient for pixel- and object-based approaches was 0.74 and 0.82, respectively. Although pixel-based approach is the most commonly used method, assessment and visual interpretation of the results clearly reveal that the object-oriented approach has advantages for this specific case-study.
Resumo:
The combination of scaled analogue experiments, material mechanics, X-ray computed tomography (XRCT) and Digital Volume Correlation techniques (DVC) is a powerful new tool not only to examine the 3 dimensional structure and kinematic evolution of complex deformation structures in scaled analogue experiments, but also to fully quantify their spatial strain distribution and complete strain history. Digital image correlation (DIC) is an important advance in quantitative physical modelling and helps to understand non-linear deformation processes. Optical non-intrusive (DIC) techniques enable the quantification of localised and distributed deformation in analogue experiments based either on images taken through transparent sidewalls (2D DIC) or on surface views (3D DIC). X-ray computed tomography (XRCT) analysis permits the non-destructive visualisation of the internal structure and kinematic evolution of scaled analogue experiments simulating tectonic evolution of complex geological structures. The combination of XRCT sectional image data of analogue experiments with 2D DIC only allows quantification of 2D displacement and strain components in section direction. This completely omits the potential of CT experiments for full 3D strain analysis of complex, non-cylindrical deformation structures. In this study, we apply digital volume correlation (DVC) techniques on XRCT scan data of “solid” analogue experiments to fully quantify the internal displacement and strain in 3 dimensions over time. Our first results indicate that the application of DVC techniques on XRCT volume data can successfully be used to quantify the 3D spatial and temporal strain patterns inside analogue experiments. We demonstrate the potential of combining DVC techniques and XRCT volume imaging for 3D strain analysis of a contractional experiment simulating the development of a non-cylindrical pop-up structure. Furthermore, we discuss various options for optimisation of granular materials, pattern generation, and data acquisition for increased resolution and accuracy of the strain results. Three-dimensional strain analysis of analogue models is of particular interest for geological and seismic interpretations of complex, non-cylindrical geological structures. The volume strain data enable the analysis of the large-scale and small-scale strain history of geological structures.
Resumo:
The paper showcases the field- and lab-documentation system developed for Kinneret Regional Project, an international archaeological expedition to the Northwestern shore of the Sea of Galilee (Israel) under the auspices of the University of Bern, the University of Helsinki, Leiden University and Wofford College. The core of the data management system is a fully relational, server-based database framework, which also includes time-based and static GIS services, stratigraphic analysis tools and fully indexed document/digital image archives. Data collection in the field is based on mobile, hand-held devices equipped with a custom-tailored stand-alone application. Comprehensive three-dimensional documentation of all finds and findings is achieved by means of total stations and/or high-precision GPS devices. All archaeological information retrieved in the field – including tachymetric data – is synched with the core system on the fly and thus immediately available for further processing in the field lab (within the local network) or for post-excavation analysis at remote institutions (via the WWW). Besides a short demonstration of the main functionalities, the paper also presents some of the key technologies used and illustrates usability aspects of the system’s individual components.
Resumo:
Quantification of protein expression based on immunohistochemistry (IHC) is an important step in clinical diagnoses and translational tissue-based research. Manual scoring systems are used in order to evaluate protein expression based on staining intensities and distribution patterns. However, visual scoring remains an inherently subjective approach. The aim of our study was to explore whether digital image analysis proves to be an alternative or even superior tool to quantify expression of membrane-bound proteins. We analyzed five membrane-binding biomarkers (HER2, EGFR, pEGFR, β-catenin, and E-cadherin) and performed IHC on tumor tissue microarrays from 153 esophageal adenocarcinomas patients from a single center study. The tissue cores were scored visually applying an established routine scoring system as well as by using digital image analysis obtaining a continuous spectrum of average staining intensity. Subsequently, we compared both assessments by survival analysis as an end point. There were no significant correlations with patient survival using visual scoring of β-catenin, E-cadherin, pEGFR, or HER2. In contrast, the results for digital image analysis approach indicated that there were significant associations with disease-free survival for β-catenin, E-cadherin, pEGFR, and HER2 (P = 0.0125, P = 0.0014, P = 0.0299, and P = 0.0096, respectively). For EGFR, there was a greater association with patient survival when digital image analysis was used compared to when visual scoring was (visual: P = 0.0045, image analysis: P < 0.0001). The results of this study indicated that digital image analysis was superior to visual scoring. Digital image analysis is more sensitive and, therefore, better able to detect biological differences within the tissues with greater accuracy. This increased sensitivity improves the quality of quantification.