5 resultados para Diffuse Ionized-gas

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cometary coma is a unique phenomenon in the solar system being a planetary atmosphere influenced by little or no gravity. As a comet approaches the sun, the water vapor with some fraction of other gases sublimate, generating a cloud of gas, ice and other refractory materials (rocky and organic dust) ejected from the surface of the nucleus. Sublimating gas molecules undergo frequent collisions and photochemical processes in the near‐nucleus region. Owing to its negligible gravity, comets produce a large and highly variable extensive dusty coma with a size much larger than the characteristic size of the cometary nucleus. The Rosetta spacecraft is en route to comet 67P/Churyumov‐Gerasimenko for a rendezvous, landing, and extensive orbital phase beginning in 2014. Both, interpretation of measurements and safety consideration of the spacecraft require modeling of the comet’s dusty gas environment. In this work we present results of a numerical study of multispecies gaseous and electrically charged dust environment of comet Chyuryumov‐Gerasimenko. Both, gas and dust phases of the coma are simulated kinetically. Photolytic reactions are taken into account. Parameters of the ambient plasma as well as the distribution of electric/magnetic fields are obtained from an MHD simulation [1] of the coma connected to the solar wind. Trajectories of ions and electrically charged dust grains are simulated by accounting for the Lorentz force and the nucleus gravity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Comets often display narrow dust jets but more diffuse gas comae when their eccentric orbits bring them into the inner solar system and sunlight sublimates the ice on the nucleus. Comets are also understood to have one or more active areas covering only a fraction of the total surface active with sublimating volatile ices. Calculations of the gas and dust distribution from a small active area on a comet’s nucleus show that as the gas moves out radially into the vacuum of space it expands tangentially, filling much of the hemisphere centered on the active region. The dust dragged by the gas remains more concentrated over the active area. This explains some puzzling appearances of comets having collimated dust jets but more diffuse gaseous atmospheres. Our test case is 67P/Churyumov–Gerasimenko, the Rosetta mission target comet, whose activity is dominated by a single area covering only 4% of its surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We prospectively investigated the potential of positron emission tomography (PET) using the somatostatin receptor (SSTR) analogue ⁶⁸Ga-DOTATATE and 2-deoxy-2[¹⁸F]fluoro-D-glucose (¹⁸F-FDG) in diffuse parenchymal lung disease (DPLD). Twenty-six patients (mean age 68.9 ± 11.0 years) with DPLD were recruited for ⁶⁸Ga-DOTATATE and ¹⁸F-FDG combined PET/high-resolution computed tomography (HRCT) studies. Ten patients had idiopathic pulmonary fibrosis (IPF), 12 patients had nonspecific interstitial pneumonia (NSIP), and 4 patients had other forms of DPLD. Using PET, the pulmonary tracer uptake (maximum standardized uptake value [SUV(max)]) was calculated. The distribution of PET tracer was compared to the distribution of lung parenchymal changes on HRCT. All patients demonstrated increased pulmonary PET signal with ⁶⁸Ga-DOTATATE and ¹⁸F-FDG. The distribution of parenchymal uptake was similar, with both tracers corresponding to the distribution of HRCT changes. The mean SUV(max) was 2.2 ± 0.7 for ⁶⁸Ga-DOTATATE and 2.8 ± 1.0 (t-test, p  =  .018) for ¹⁸F-FDG. The mean ⁶⁸Ga-DOTATATE SUV(max) in IPF patients was 2.5 ± 0.9, whereas it was 2.0 ± 0.7 (p  =  .235) in NSIP patients. The correlation between ⁶⁸Ga-DOTATATE SUV(max) and gas transfer (transfer factor of the lung for carbon monoxide [TLCO]) was r  =  -.34 (p  =  .127) and r  =  -.49 (p  =  .028) between ¹⁸F-FDG SUV(max) and TLCO. We provide noninvasive in vivo evidence in humans showing that SSTRs may be detected in the lungs of patients with DPLD in a similar distribution to sites of increased uptake of ¹⁸F-FDG on PET.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECT: Severe traumatic brain injury (TBI) imposes a huge metabolic load on brain tissue, which can be summarized initially as a state of hypermetabolism and hyperglycolysis. In experiments O2 consumption has been shown to increase early after trauma, especially in the presence of high lactate levels and forced O2 availability. In recent clinical studies the effect of increasing O2 availability on brain metabolism has been analyzed. By their nature, however, clinical trauma models suffer from a heterogeneous injury distribution. The aim of this study was to analyze, in a standardized diffuse brain injury model, the effect of increasing the fraction of inspired O2 on brain glucose and lactate levels, and to compare this effect with the metabolism of the noninjured sham-operated brain. METHODS: A diffuse severe TBI model developed by Foda and Maramarou, et al., in which a 420-g weight is dropped from a height of 2 m was used in this study. Forty-one male Wistar rats each weighing approximately 300 g were included. Anesthesized rats were monitored by placing a femoral arterial line for blood pressure and blood was drawn for a blood gas analysis. Two time periods were defined: Period A was defined as preinjury and Period B as postinjury. During Period B two levels of fraction of inspired oxygen (FiO2) were studied: air (FiO2 0.21) and oxygen (FiO2 1). Four groups were studied including sham-operated animals: air-air-sham (AAS); air-O2-sham (AOS); air-air-trauma (AAT); and air-O2-trauma (AOT). In six rats the effect of increasing the FiO2 on serum glucose and lactate was analyzed. During Period B lactate values in the brain determined using microdialysis were significantly lower (p < 0.05) in the AOT group than in the AAT group and glucose values in the brain determined using microdialysis were significantly higher (p < 0.04). No differences were demonstrated in the other groups. Increasing the FiO2 had no significant effect on the serum levels of glucose and lactate. CONCLUSIONS: Increasing the FiO2 influences dialysate glucose and lactate levels in injured brain tissue. Using an FiO2 of 1 influences brain metabolism in such a way that lactate is significantly reduced and glucose significantly increased. No changes in dialysate glucose and lactate values were found in the noninjured brain.