5 resultados para Dickens, Charles, 1812-1870 -- Translations into Catalan
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Sex hormones influence immune responses and the development of autoimmune diseases including MS and its animal model, EAE. Although it has been previously reported that ovariectomy could worsen EAE, the mechanisms implicated in the protective action of endogenous ovarian hormones have not been addressed. In this report, we now show that endogenous estrogens limit EAE development and CNS inflammation in adult female mice through estrogen receptor expression in the host non-hematopoietic tissues. We provide evidence that the enhancing effect of gonadectomy on EAE development was due to quantitative rather than qualitative changes in effector Th1 or Th17 cell recruitment into the CNS. Consistent with this observation, adoptive transfer of myelin oligodendrocyte glycoprotein-specific encephalitogenic CD4(+) T lymphocytes induced more severe EAE in ovariectomized mice as compared to normal female mice. Finally, we show that gonadectomy accelerated the early recruitment of inflammatory cells into the CNS upon adoptive transfer of encephalitogenic CD4(+) T cells. Altogether, these data show that endogenous estrogens, through estrogen receptor , exert a protective effect on EAE by limiting the recruitment of blood-derived inflammatory cells into the CNS.
Resumo:
BACKGROUND Cavalier King Charles Spaniels (CKCS) have a high prevalence of inherited macrothrombocytopenia. The purpose of this study was to determine if a mutation in beta1-tubulin correlated with presumptive inherited macrothrombocytopenia. HYPOTHESIS A mutation in beta1-tubulin results in synthesis of an altered beta1-tubulin monomer. alpha-beta tubulin dimers within microtubule protofilaments are unstable, resulting in altered megakaryocyte proplatelet formation. ANIMALS Blood samples were obtained from CKCS and non-CKCS dogs. METHODS DNA was used in polymerase chain reaction (PCR) assays to evaluate beta1-tubulin. Platelet numbers and mean platelet volume (MPV) were evaluated for a correlation with the presence or absence of a mutation identified in beta1-tubulin. Platelets obtained from homozygous, heterozygous, and clear CKCS were further evaluated using electron microscopy and immunofluorescence. RESULTS A mutation in the gene encoding beta1-tubulin correlated with macrothrombocytopenia in CKCS. Electron microscopy and immunofluorescence studies suggest that platelet microtubules are present but most likely are unstable and decreased in number. CONCLUSIONS AND CLINICAL IMPORTANCE The macrothrombocytopenia of CKCS correlated with a mutation in beta1-tubulin. alpha-beta tubulin dimers within protofilaments most likely are unstable, leading to altered proplatelet formation by megakaryocytes. This information will aid in distinguishing inherited from acquired thrombocytopenia. It also provides insight into the mechanism of platelet production by megakaryocytes, and also may prove useful in understanding heart-related changes in macrothrombocytopenic CKCS with concurrent mitral valve regurgitation.