18 resultados para Development Applications
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Java Enterprise Applications (JEAs) are large systems that integrate multiple technologies and programming languages. Transactions in JEAs simplify the development of code that deals with failure recovery and multi-user coordination by guaranteeing atomicity of sets of operations. The heterogeneous nature of JEAs, however, can obfuscate conceptual errors in the application code, and in particular can hide incorrect declarations of transaction scope. In this paper we present a technique to expose and analyze the application transaction scope in JEAs by merging and analyzing information from multiple sources. We also present several novel visualizations that aid in the analysis of transaction scope by highlighting anomalies in the specification of transactions and violations of architectural constraints. We have validated our approach on two versions of a large commercial case study.
Resumo:
Seaside is the open source framework of choice for developing sophisticated and dynamic web applications. Seaside uses the power of objects to master the web. With Seaside web applications is as simple as building desktop applications. Seaside lets you build highly dynamic and interactive web applications. Seaside supports agile development through interactive debugging and unit testing. Seaside is based on Smalltalk, a proven and robust language implemented by different vendors. Seaside is now available for all the major Smalltalk including Pharo, Squeak, GNU Smalltalk, Cincom Smalltalk, GemStone Smalltalk, and VA Smalltalk.
Resumo:
BACKGROUND: Children in emergencies need peripheral intravenous (IV) access in order to receive drugs or fluids. The success of IV access is associated with the age of patients and fails in up to 50% of children younger than 6 years. In such situations, it is essential that physicians and paramedics have a tool and easily learnable skills with a high chance of success. According to international guidelines intraosseous (IO) access would be the next step after failed IV access. Our hypothesis was that the success rate in IO puncturing can be improved by standardizing the training; so we developed an IO workshop. METHODS: Twenty-eight hospitals and ambulance services participated in an evaluation process over 3 years. IO workshops and the distribution of standardized IO sets were coordinated by the study group of the University Hospital of Berne. Any attempted or successful IO punctures were evaluated with a standardized interview. RESULTS: We investigated 35 applications in 30 patients (a total of 49 punctures) between November 2001 and December 2004. IO puncture was not successful in 5 patients. The success rate depended neither on the occupation nor the experience of users. Attendance at a standardized IO workshop increased the overall success rate from 77% to 100%, which was statistically not significant (P = 0.074). CONCLUSIONS: Standardized training in IO puncturing seems to improve success more than previous experience and occupation of providers. However, we could not show a significant increase in success rate after this training. Larger supranational studies are needed to show a significant impact of teaching on rarely used emergency skills.
Resumo:
Flat-panel volume computed tomography (fpVCT) is a recent development in imaging. We discuss some of the musculoskeletal applications of a high-resolution flat-panel CT scanner. FpVCT has four main advantages over conventional multidetector computed tomography (MDCT): high-resolution imaging; volumetric coverage; dynamic imaging; omni-scanning. The overall effective dose of fpVCT is comparable to that of MDCT scanning. Although current fpVCT technology has higher spatial resolution, its contrast resolution is slightly lower than that of MDCT (5-10HU vs. 1-3HU respectively). We discuss the efficacy and potential utility of fpVCT in various applications related to musculoskeletal radiology and review some novel applications for pediatric bones, soft tissues, tumor perfusion, and imaging of tissue-engineered bone growth. We further discuss high-resolution CT and omni-scanning (combines fluoroscopic and tomographic imaging).
Resumo:
Java Enterprise Applications (JEAs) are complex systems composed using various technologies that in turn rely on languages other than Java, such as XML or SQL. Given the complexity of these applications, the need to reverse engineer them in order to support further development becomes critical. In this paper we show how it is possible to split a system into layers and how is possible to interpret the distance between application elements in order to support the refactoring of JEAs. The purpose of this paper is to explore ways to provide suggestions about the refactoring operations to perform on the code by evaluating the distance between layers and elements belonging those layers. We split JEAs into layers by considering the kinds and the purposes of the elements composing the application. We measure distance between elements by using the notion of the shortest path in a graph. Also we present how to enrich the interpretation of the distance value with enterprise pattern detection in order to refine the suggestion about modifications to perform on the code.
Resumo:
Tropical wetlands are estimated to represent about 50% of the natural wetland methane (CH4) emissions and explain a large fraction of the observed CH4 variability on timescales ranging from glacial–interglacial cycles to the currently observed year-to-year variability. Despite their importance, however, tropical wetlands are poorly represented in global models aiming to predict global CH4 emissions. This publication documents a first step in the development of a process-based model of CH4 emissions from tropical floodplains for global applications. For this purpose, the LPX-Bern Dynamic Global Vegetation Model (LPX hereafter) was slightly modified to represent floodplain hydrology, vegetation and associated CH4 emissions. The extent of tropical floodplains was prescribed using output from the spatially explicit hydrology model PCR-GLOBWB. We introduced new plant functional types (PFTs) that explicitly represent floodplain vegetation. The PFT parameterizations were evaluated against available remote-sensing data sets (GLC2000 land cover and MODIS Net Primary Productivity). Simulated CH4 flux densities were evaluated against field observations and regional flux inventories. Simulated CH4 emissions at Amazon Basin scale were compared to model simulations performed in the WETCHIMP intercomparison project. We found that LPX reproduces the average magnitude of observed net CH4 flux densities for the Amazon Basin. However, the model does not reproduce the variability between sites or between years within a site. Unfortunately, site information is too limited to attest or disprove some model features. At the Amazon Basin scale, our results underline the large uncertainty in the magnitude of wetland CH4 emissions. Sensitivity analyses gave insights into the main drivers of floodplain CH4 emission and their associated uncertainties. In particular, uncertainties in floodplain extent (i.e., difference between GLC2000 and PCR-GLOBWB output) modulate the simulated emissions by a factor of about 2. Our best estimates, using PCR-GLOBWB in combination with GLC2000, lead to simulated Amazon-integrated emissions of 44.4 ± 4.8 Tg yr−1. Additionally, the LPX emissions are highly sensitive to vegetation distribution. Two simulations with the same mean PFT cover, but different spatial distributions of grasslands within the basin, modulated emissions by about 20%. Correcting the LPX-simulated NPP using MODIS reduces the Amazon emissions by 11.3%. Finally, due to an intrinsic limitation of LPX to account for seasonality in floodplain extent, the model failed to reproduce the full dynamics in CH4 emissions but we proposed solutions to this issue. The interannual variability (IAV) of the emissions increases by 90% if the IAV in floodplain extent is accounted for, but still remains lower than in most of the WETCHIMP models. While our model includes more mechanisms specific to tropical floodplains, we were unable to reduce the uncertainty in the magnitude of wetland CH4 emissions of the Amazon Basin. Our results helped identify and prioritize directions towards more accurate estimates of tropical CH4 emissions, and they stress the need for more research to constrain floodplain CH4 emissions and their temporal variability, even before including other fundamental mechanisms such as floating macrophytes or lateral water fluxes.
Resumo:
A great variety of viruses have been engineered to serve as expression vectors. Among them, the alphaviruses Semliki Forest virus and Sindbis virus represent promising tools for heterologous gene expression in a wide variety of host cells. Several applications have already been described in neurobiological studies, in gene therapy, for vaccine development and in cancer therapy. Both viruses trigger stress pathways in the cells they infect, sometimes culminating in the death of the host. This inherent property is either an advantage or a drawback, depending on the type of application. This review covers the development and applications of alphavirus vectors and, as our work has been mainly with Semliki Forest virus, we have focused on this virus with special emphasis on how the understanding of Semliki Forest virus cytotoxicity enables it to be manipulated and used.
Resumo:
Magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) provide metabolic information on the musculoskeletal system, thus helping to understand the biochemical and pathophysiological nature of numerous diseases. In particular, MRS has been used to study the energy metabolism of muscular tissue since the very beginning of magnetic resonance examinations in humans when small-bore magnets for studies of the limbs became available. Even more than in other organs, the observation of non-proton-nuclei was important in muscle tissue. Spatial localization was less demanding in these studies, however, high temporal resolution was necessary to follow metabolism during exercise and recovery. The observation of high-energy phosphates during and after the application of workload gives insight into oxidative phosphorylation, a process that takes place in the mitochondria and characterizes impaired mitochondrial function. New applications in insulin-resistant patients followed the development of volume-selective 1H-MRS in whole-body magnets. Nowadays, multinuclear MRS and MRSI of the musculoskeletal system provide several windows to vital biochemical pathways noninvasively. It is shown how MRS and MRSI have been used in numerous diseases to characterize an involvement of the muscular metabolism.
Resumo:
In recent years, the econometrics literature has shown a growing interest in the study of partially identified models, in which the object of economic and statistical interest is a set rather than a point. The characterization of this set and the development of consistent estimators and inference procedures for it with desirable properties are the main goals of partial identification analysis. This review introduces the fundamental tools of the theory of random sets, which brings together elements of topology, convex geometry, and probability theory to develop a coherent mathematical framework to analyze random elements whose realizations are sets. It then elucidates how these tools have been fruitfully applied in econometrics to reach the goals of partial identification analysis.
Resumo:
The new Bern cyclotron laboratory aims at industrial radioisotope production for PET diagnostics and multidisciplinary research by means of a specifically conceived beam transfer line, terminated in a separate bunker. In this framework, an innovative beam monitor detector based on doped silica and optical fibres has been designed, constructed, and tested. Scintillation light produced by Ce and Sb doped silica fibres moving across the beam is measured, giving information on beam position, shape, and intensity. The doped fibres are coupled to commercial optical fibres, allowing the read-out of the signal far away from the radiation source. This general-purpose device can be easily adapted for any accelerator used in medical applications and is suitable either for low currents used in hadrontherapy or for currents up to a few μA for radioisotope production, as well as for both pulsed and continuous beams.