10 resultados para Determination method
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
A liquid chromatography tandem mass spectrometry (LC-MS/MS) confirmatory method for the simultaneous determination of nine corticosteroids in liver, including the four MRL compounds listed in Council Regulation 37/2010, was developed. After an enzymatic deconjugation and a solvent extraction of the liver tissue, the resulting solution was cleaned up through an SPE Oasis HLB cartridge. The analytes were then detected by liquid chromatography-negative-ion electrospray tandem mass spectrometry, using deuterium-labelled internal standards. The procedure was validated as a quantitative confirmatory method according to the Commission Decision 2002/657/EC criteria. The results showed that the method was suitable for statutory residue testing regarding the following performance characteristics: instrumental linearity, specificity, precision (repeatability and intra-laboratory reproducibility), recovery, decision limit (CCα), detection capability (CCβ) and ruggedness. All the corticosteroids can be detected at a concentration around 1 μg kg(-1); the recoveries were above 62% for all the analytes. Repeatability and reproducibility (within-laboratory reproducibility) for all the analytes were below 7.65% and 15.5%, respectively.
Resumo:
To investigate the inhomogeneity of radiofrequency fields at higher field strengths that can interfere with established volumetric methods, in particular for the determination of visceral (VAT) and subcutaneous adipose tissue (SCAT). A versatile, interactive sparse sampling (VISS) method is proposed to determine VAT, SCAT, and also total body volume (TBV).
Resumo:
The aim of this study was to validate the accuracy and reproducibility of a statistical shape model-based 2D/3D reconstruction method for determining cup orientation after total hip arthroplasty. With a statistical shape model, this method allows reconstructing a patient-specific 3D-model of the pelvis from a standard AP X-ray radiograph. Cup orientation (inclination and anteversion) is then calculated with respect to the anterior pelvic plane that is derived from the reconstructed model.
Resumo:
Our goal was to validate accuracy, consistency, and reproducibility/reliability of a new method for determining cup orientation in total hip arthroplasty (THA). This method allows matching the 3D-model from CT images or slices with the projected pelvis on an anteroposterior pelvic radiograph using a fully automated registration procedure. Cup orientation (inclination and anteversion) is calculated relative to the anterior pelvic plane, corrected for individual malposition of the pelvis during radiograph acquisition. Measurements on blinded and randomized radiographs of 80 cadaver and 327 patient hips were investigated. The method showed a mean accuracy of 0.7 +/- 1.7 degrees (-3.7 degrees to 4.0 degrees) for inclination and 1.2 +/- 2.4 degrees (-5.3 degrees to 5.6 degrees) for anteversion in the cadaver trials and 1.7 +/- 1.7 degrees (-4.6 degrees to 5.5 degrees) for inclination and 0.9 +/- 2.8 degrees (-5.2 degrees to 5.7 degrees) for anteversion in the clinical data when compared to CT-based measurements. No systematic errors in accuracy were detected with the Bland-Altman analysis. The software consistency and the reproducibility/reliability were very good. This software is an accurate, consistent, reliable, and reproducible method to measure cup orientation in THA using a sophisticated 2D/3D-matching technique. Its robust and accurate matching algorithm can be expanded to statistical models.
Resumo:
Abstract We demonstrate the use of Fourier transform infrared spectroscopy (FTIRS) to make quantitative measures of total organic carbon (TOC), total inorganic carbon (TIC) and biogenic silica (BSi) concentrations in sediment. FTIRS is a fast and costeffective technique and only small sediment samples are needed (0.01 g). Statistically significant models were developed using sediment samples from northern Sweden and were applied to sediment records from Sweden, northeast Siberia and Macedonia. The correlation between FTIRS-inferred values and amounts of biogeochemical constituents assessed conventionally varied between r = 0.84–0.99 for TOC, r = 0.85– 0.99 for TIC, and r = 0.68–0.94 for BSi. Because FTIR spectra contain information on a large number of both inorganic and organic components, there is great potential for FTIRS to become an important tool in paleolimnology.
Resumo:
Phosphorus (P) is an essential macronutrient for all living organisms. Phosphorus is often present in nature as the soluble phosphate ion PO43– and has biological, terrestrial, and marine emission sources. Thus PO43– detected in ice cores has the potential to be an important tracer for biological activity in the past. In this study a continuous and highly sensitive absorption method for detection of dissolved reactive phosphorus (DRP) in ice cores has been developed using a molybdate reagent and a 2-m liquid waveguide capillary cell (LWCC). DRP is the soluble form of the nutrient phosphorus, which reacts with molybdate. The method was optimized to meet the low concentrations of DRP in Greenland ice, with a depth resolution of approximately 2 cm and an analytical uncertainty of 1.1 nM (0.1 ppb) PO43–. The method has been applied to segments of a shallow firn core from Northeast Greenland, indicating a mean concentration level of 2.74 nM (0.26 ppb) PO43– for the period 1930–2005 with a standard deviation of 1.37 nM (0.13 ppb) PO43– and values reaching as high as 10.52 nM (1 ppb) PO43–. Similar levels were detected for the period 1771–1823. Based on impurity abundances, dust and biogenic particles were found to be the most likely sources of DRP deposited in Northeast Greenland.
Resumo:
Fire has an influence on regional to global atmospheric chemistry and climate. Molecular markers of biomass burning archived in lake sediments are becoming increasingly important in paleoenvironmental reconstruction and may help determine the interaction between climate and fire activity. Here, we present a high performance anion exchange chromatography–mass spectrometry method to allow separation and analysis of levoglucosan, mannosan and galactosan in lake sediments, with implications for reconstructing past biomass burning events. Determining mannosan and galactosan in Lake Kirkpatrick, New Zealand (45.03°S, 168.57°E) sediment cores and comparing these isomers with the more abundant biomass burning markers levoglucosan and charcoal represents a significant advancement in our ability to analyze past fire activity. Levoglucosan, mannosan and galactosan concentrations correlated significantly with macroscopic charcoal concentration. Levoglucosan/mannosan and levoglucosan/(mannosan + galactosan) ratios may help determine not only when fires occurred, but also if changes in the primary burned vegetation occurred.
Resumo:
A new technique to porewater extraction from claystone employs advective displacement of the in situ porewater by traced artificial porewater. Monitoring of tracer breakthrough yields species-specific transport properties. Results for Opalinus Clay from the Mont Terri Research Laboratory indicate that the chemical disturbances due to the method are minimal, and the observed significant differences in transport properties for Br– and 2H are in agreement with existing data. Sampling times are 2–4 months, and observation of tracer breakthrough takes 12–24 months at hydraulic conductivity of ∼10-13 m/s.