8 resultados para Design Studio Model
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Ecosystems are faced with high rates of species loss which has consequences for their functions and services. To assess the effects of plant species diversity on the nitrogen (N) cycle, we developed a model for monthly mean nitrate (NO3-N) concentrations in soil solution in 0-30 cm mineral soil depth using plant species and functional group richness and functional composition as drivers and assessing the effects of conversion of arable land to grassland, spatially heterogeneous soil properties, and climate. We used monthly mean NO3-N concentrations from 62 plots of a grassland plant diversity experiment from 2003 to 2006. Plant species richness (1-60) and functional group composition (1-4 functional groups: legumes, grasses, non-leguminous tall herbs, non-leguminous small herbs) were manipulated in a factorial design. Plant community composition, time since conversion from arable land to grassland, soil texture, and climate data (precipitation, soil moisture, air and soil temperature) were used to develop one general Bayesian multiple regression model for the 62 plots to allow an in-depth evaluation using the experimental design. The model simulated NO3-N concentrations with an overall Bayesian coefficient of determination of 0.48. The temporal course of NO3-N concentrations was simulated differently well for the individual plots with a maximum plot-specific Nash-Sutcliffe Efficiency of 0.57. The model shows that NO3-N concentrations decrease with species richness, but this relation reverses if more than approx. 25 % of legume species are included in the mixture. Presence of legumes increases and presence of grasses decreases NO3-N concentrations compared to mixtures containing only small and tall herbs. Altogether, our model shows that there is a strong influence of plant community composition on NO3-N concentrations.
Resumo:
This paper presents an automated solution for precise detection of fiducial screws from three-dimensional (3D) Computerized Tomography (CT)/Digital Volume Tomography (DVT) data for image-guided ENT surgery. Unlike previously published solutions, we regard the detection of the fiducial screws from the CT/DVT volume data as a pose estimation problem. We thus developed a model-based solution. Starting from a user-supplied initialization, our solution detects the fiducial screws by iteratively matching a computer aided design (CAD) model of the fiducial screw to features extracted from the CT/DVT data. We validated our solution on one conventional CT dataset and on five DVT volume datasets, resulting in a total detection of 24 fiducial screws. Our experimental results indicate that the proposed solution achieves much higher reproducibility and precision than the manual detection. Further comparison shows that the proposed solution produces better results on the DVT dataset than on the conventional CT dataset.
Resumo:
OBJECTIVES: Treatment as prevention depends on retaining HIV-infected patients in care. We investigated the effect on HIV transmission of bringing patients lost to follow up (LTFU) back into care. DESIGN: Mathematical model. METHODS: Stochastic mathematical model of cohorts of 1000 HIV-infected patients on antiretroviral therapy (ART), based on data from two clinics in Lilongwe, Malawi. We calculated cohort viral load (CVL; sum of individual mean viral loads each year) and used a mathematical relationship between viral load and transmission probability to estimate the number of new HIV infections. We simulated four scenarios: 'no LTFU' (all patients stay in care); 'no tracing' (patients LTFU are not traced); 'immediate tracing' (after missed clinic appointment); and, 'delayed tracing' (after six months). RESULTS: About 440 of 1000 patients were LTFU over five years. CVL (million copies/ml per 1000 patients) were 3.7 (95% prediction interval [PrI] 2.9-4.9) for no LTFU, 8.6 (95% PrI 7.3-10.0) for no tracing, 7.7 (95% PrI 6.2-9.1) for immediate, and 8.0 (95% PrI 6.7-9.5) for delayed tracing. Comparing no LTFU with no tracing the number of new infections increased from 33 (95% PrI 29-38) to 54 (95% PrI 47-60) per 1000 patients. Immediate tracing prevented 3.6 (95% PrI -3.3-12.8) and delayed tracing 2.5 (95% PrI -5.8-11.1) new infections per 1000. Immediate tracing was more efficient than delayed tracing: 116 and to 142 tracing efforts, respectively, were needed to prevent one new infection. CONCLUSION: Tracing of patients LTFU enhances the preventive effect of ART, but the number of transmissions prevented is small.
Resumo:
BACKGROUND Monitoring of HIV viral load in patients on combination antiretroviral therapy (ART) is not generally available in resource-limited settings. We examined the cost-effectiveness of qualitative point-of-care viral load tests (POC-VL) in sub-Saharan Africa. DESIGN Mathematical model based on longitudinal data from the Gugulethu and Khayelitsha township ART programmes in Cape Town, South Africa. METHODS Cohorts of patients on ART monitored by POC-VL, CD4 cell count or clinically were simulated. Scenario A considered the more accurate detection of treatment failure with POC-VL only, and scenario B also considered the effect on HIV transmission. Scenario C further assumed that the risk of virologic failure is halved with POC-VL due to improved adherence. We estimated the change in costs per quality-adjusted life-year gained (incremental cost-effectiveness ratios, ICERs) of POC-VL compared with CD4 and clinical monitoring. RESULTS POC-VL tests with detection limits less than 1000 copies/ml increased costs due to unnecessary switches to second-line ART, without improving survival. Assuming POC-VL unit costs between US$5 and US$20 and detection limits between 1000 and 10,000 copies/ml, the ICER of POC-VL was US$4010-US$9230 compared with clinical and US$5960-US$25540 compared with CD4 cell count monitoring. In Scenario B, the corresponding ICERs were US$2450-US$5830 and US$2230-US$10380. In Scenario C, the ICER ranged between US$960 and US$2500 compared with clinical monitoring and between cost-saving and US$2460 compared with CD4 monitoring. CONCLUSION The cost-effectiveness of POC-VL for monitoring ART is improved by a higher detection limit, by taking the reduction in new HIV infections into account and assuming that failure of first-line ART is reduced due to targeted adherence counselling.
Resumo:
This study was carried out to detect differences in locomotion and feeding behavior in lame (group L; n = 41; gait score ≥ 2.5) and non-lame (group C; n = 12; gait score ≤ 2) multiparous Holstein cows in a cross-sectional study design. A model for automatic lameness detection was created, using data from accelerometers attached to the hind limbs and noseband sensors attached to the head. Each cow's gait was videotaped and scored on a 5-point scale before and after a period of 3 consecutive days of behavioral data recording. The mean value of 3 independent experienced observers was taken as a definite gait score and considered to be the gold standard. For statistical analysis, data from the noseband sensor and one of two accelerometers per cow (randomly selected) of 2 out of 3 randomly selected days was used. For comparison between group L and group C, the T-test, the Aspin-Welch Test and the Wilcoxon Test were used. The sensitivity and specificity for lameness detection was determined with logistic regression and ROC-analysis. Group L compared to group C had significantly lower eating and ruminating time, fewer eating chews, ruminating chews and ruminating boluses, longer lying time and lying bout duration, lower standing time, fewer standing and walking bouts, fewer, slower and shorter strides and a lower walking speed. The model considering the number of standing bouts and walking speed was the best predictor of cows being lame with a sensitivity of 90.2% and specificity of 91.7%. Sensitivity and specificity of the lameness detection model were considered to be very high, even without the use of halter data. It was concluded that under the conditions of the study farm, accelerometer data were suitable for accurately distinguishing between lame and non-lame dairy cows, even in cases of slight lameness with a gait score of 2.5.
Resumo:
BACKGROUND: Short-acting agents for neuromuscular block (NMB) require frequent dosing adjustments for individual patient's needs. In this study, we verified a new closed-loop controller for mivacurium dosing in clinical trials. METHODS: Fifteen patients were studied. T1% measured with electromyography was used as input signal for the model-based controller. After induction of propofol/opiate anaesthesia, stabilization of baseline electromyography signal was awaited and a bolus of 0.3 mg kg-1 mivacurium was then administered to facilitate endotracheal intubation. Closed-loop infusion was started thereafter, targeting a neuromuscular block of 90%. Setpoint deviation, the number of manual interventions and surgeon's complaints were recorded. Drug use and its variability between and within patients were evaluated. RESULTS: Median time of closed-loop control for the 11 patients included in the data processing was 135 [89-336] min (median [range]). Four patients had to be excluded because of sensor problems. Mean absolute deviation from setpoint was 1.8 +/- 0.9 T1%. Neither manual interventions nor complaints from the surgeons were recorded. Mean necessary mivacurium infusion rate was 7.0 +/- 2.2 microg kg-1 min-1. Intrapatient variability of mean infusion rates over 30-min interval showed high differences up to a factor of 1.8 between highest and lowest requirement in the same patient. CONCLUSIONS: Neuromuscular block can precisely be controlled with mivacurium using our model-based controller. The amount of mivacurium needed to maintain T1% at defined constant levels differed largely between and within patients. Closed-loop control seems therefore advantageous to automatically maintain neuromuscular block at constant levels.