83 resultados para Dense Set
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND The study set out to identify clinical, laboratory and radiological predictors of early mortality after an acute ischaemic stroke (AIS) and to analyse medical and neurological complications that caused death. METHODS A total of 479 consecutive patients (mean age 63+/-14 years) with AIS underwent stroke examination and treatment. Examination included clinical evaluation, laboratory tests, and brain CT and/or MRI. Follow-up data at 30 days were available for 467 patients (93%) who were included in the present analysis. RESULTS The median National Institute of Health Stroke Study (NIHSS) score on admission was 6. A total of 62 patients (13%) died within 30 days. The cause of death was the initial event in 43 (69%), pneumonia in 12 (19%), intracerebral haemorrhage in 9 (15%), recurrent stroke in 6 (10%), myocardial infarction in 2 (3%), and cancer in 1 (2%) of the patients. In univariate comparisons, advanced age (p<0.001), hypertension (p=0.013), coronary disease (p=0.001), NIHSS score (p<0.001), undetermined stroke etiology (p=0.031), relevant co-morbidities (p=0.008), hyperglycemia (p<0.001), atrial fibrillation (p<0.001), early CT signs of ischemia (p<0.001), dense artery sign (p<0.001), proximal vessel occlusion (p<0.001), and thrombolysis (p=0.008) were associated with early mortality. In multivariate analysis, advanced age (HR=1.12; 95% CI 1.05-1.19; p<0.001) and high NIHSS score on admission (HR=1.15, 95% CI 1.05-1.25; p=0.002) were independent predictors of early mortality. CONCLUSIONS We report 13% mortality at 30 days after AIS. More than two thirds of the deaths are related to the initial stroke. Advanced age and high NIHSS score are the only independent predictors of early mortality in this series.
Resumo:
To observe detailed changes in neurosensory retinal structure after anti-VEGF upload in age-related macular degeneration (AMD), by using spectral domain optical coherence tomography (SD-OCT).
Resumo:
Statistical shape models (SSMs) have been used widely as a basis for segmenting and interpreting complex anatomical structures. The robustness of these models are sensitive to the registration procedures, i.e., establishment of a dense correspondence across a training data set. In this work, two SSMs based on the same training data set of scoliotic vertebrae, and registration procedures were compared. The first model was constructed based on the original binary masks without applying any image pre- and post-processing, and the second was obtained by means of a feature preserving smoothing method applied to the original training data set, followed by a standard rasterization algorithm. The accuracies of the correspondences were assessed quantitatively by means of the maximum of the mean minimum distance (MMMD) and Hausdorf distance (H(D)). Anatomical validity of the models were quantified by means of three different criteria, i.e., compactness, specificity, and model generalization ability. The objective of this study was to compare quasi-identical models based on standard metrics. Preliminary results suggest that the MMMD distance and eigenvalues are not sensitive metrics for evaluating the performance and robustness of SSMs.
Resumo:
HIV virulence, i.e. the time of progression to AIDS, varies greatly among patients. As for other rapidly evolving pathogens of humans, it is difficult to know if this variance is controlled by the genotype of the host or that of the virus because the transmission chain is usually unknown. We apply the phylogenetic comparative approach (PCA) to estimate the heritability of a trait from one infection to the next, which indicates the control of the virus genotype over this trait. The idea is to use viral RNA sequences obtained from patients infected by HIV-1 subtype B to build a phylogeny, which approximately reflects the transmission chain. Heritability is measured statistically as the propensity for patients close in the phylogeny to exhibit similar infection trait values. The approach reveals that up to half of the variance in set-point viral load, a trait associated with virulence, can be heritable. Our estimate is significant and robust to noise in the phylogeny. We also check for the consistency of our approach by showing that a trait related to drug resistance is almost entirely heritable. Finally, we show the importance of taking into account the transmission chain when estimating correlations between infection traits. The fact that HIV virulence is, at least partially, heritable from one infection to the next has clinical and epidemiological implications. The difference between earlier studies and ours comes from the quality of our dataset and from the power of the PCA, which can be applied to large datasets and accounts for within-host evolution. The PCA opens new perspectives for approaches linking clinical data and evolutionary biology because it can be extended to study other traits or other infectious diseases.
Resumo:
This paper presents a kernel density correlation based nonrigid point set matching method and shows its application in statistical model based 2D/3D reconstruction of a scaled, patient-specific model from an un-calibrated x-ray radiograph. In this method, both the reference point set and the floating point set are first represented using kernel density estimates. A correlation measure between these two kernel density estimates is then optimized to find a displacement field such that the floating point set is moved to the reference point set. Regularizations based on the overall deformation energy and the motion smoothness energy are used to constraint the displacement field for a robust point set matching. Incorporating this non-rigid point set matching method into a statistical model based 2D/3D reconstruction framework, we can reconstruct a scaled, patient-specific model from noisy edge points that are extracted directly from the x-ray radiograph by an edge detector. Our experiment conducted on datasets of two patients and six cadavers demonstrates a mean reconstruction error of 1.9 mm
Resumo:
L’estimation du stock de carbone contenu dans les forêts peut être effectuée de plusieurs manières. Les méthodes les plus connues sont destructives et nécessitent l’abattage d’un grand nombre représentatif d’arbres. Cette représentativité est difficilement atteinte dans les forêts tropicales, présentant une diversité d’espèces exceptionnelles, comme à Madagascar. Afin d’évaluer le niveau de dégradation des forêts, une étude d'images par télédétection est effectuée au moyen de l’analyse du signal radiométrique, combinée à un inventaire non destructif de biomasse. L’étude de la dynamique du paysage proposé est alors basée sur une correction atmosphérique d’une image SPOT 5, de l’année 2009, et sur une classification semi supervisée de l’occupation des sols, combinant une classification préliminaire non supervisée, un échantillonnage aléatoire des classes et une classification supervisée avec un maximum de vraisemblance. La validation est effectuée à l’aide de points indépendants relevés lors des inventaires de biomasse avec des valeurs du stock de carbone bien précises. La classification non supervisée a permis de ressortir deux classes de forêt dénommées « peu dégradée » et « dégradée ». La première désigne l’état climax (le stock de carbone a atteint une valeur qui varie peu) alors que la seconde est caractérisée par un taux de carbone plus faible que le niveau climax, mais qui peut être atteint sans perturbation. Cette première classification permet alors de répartir les placettes d’inventaire dans chaque classe. La méthode d’inventaire recueille à la fois des données dendrométriques classiques (espèce, densité, hauteur totale, hauteur fût, diamètre) et des échantillons représentatifs de branches et de feuilles sur un arbre. Ces différents paramètres avec la densité de bois permettent d’établir une équation allométrique de laquelle est estimée la biomasse totale d’un arbre et conséquemment de la formation forestière. Par la suite, la classification supervisée a été effectuée à partir d’échantillons aléatoires donnant la valeur de séparabilité des classes, de la classification finale. De plus, les valeurs de stocks de carbone à l’hectare, estimées de chaque placette, ont permis de valider cette classification et d’avoir une évaluation de la précision. La connaissance de ce niveau de dégradation issue de données satellitaires à haute résolution spatiale, combinées à des données d’inventaire, ouvre le champ du suivi interannuel du stock de carbone et subséquemment de la modélisation de la situation future du stock de carbone dans différents types de forêts.