2 resultados para Dehydroascorbic Acid

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Transporters for vitamin C and its oxidized form dehydroascorbic acid (DHA) are crucial to maintain physiological concentrations of this important vitamin that is used in a variety of biochemical processes. The human SLC23 family consists of the Na(+)-dependent vitamin C transporters SVCT1 (encoded by the SLC23A1 gene) and SVCT2 (SLC23A2) as well as an orphan transporter SVCT3 (SLC23A3). Phylogenetically, the SLC23 family belongs to the nucleobase-ascorbate transporter (NAT) family, although no nucleobase transport has yet been demonstrated for the human members of this family. The SVCT1 and SVCT2 transporters are rather specific for ascorbic acid, which is an important antioxidant and plays a crucial role in a many metal-containing enzymes. SVCT1 is expressed predominantly in epithelial tissues such as intestine where it contributes to the supply and maintenance of whole-body ascorbic acid levels. In contrast to various other mammals, humans are not capable of synthesizing ascorbic acid from glucose and therefore the uptake of ascorbic acid from the diet via SVCT1 is essential for maintaining appropriate concentrations of vitamin C in the human body. The expression of SVCT2 is relatively widespread, where it serves to either deliver ascorbic acid to tissues with high demand of the vitamin for enzymatic reactions or to protect metabolically highly active cells or specialized tissues from oxidative stress. The murine Slc23a3 gene encoding the orphan transporter SVCT3 was originally cloned from mouse yolk sac, and subsequent studies showed that it is expressed in the kidney. However, the function of SVCT3 has not been reported and it remains speculative as to whether SVCT3 is a nucleobase transporter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As oxidative stress has been implicated in the pathogenesis of certain viral diseases we determined antioxidant and prooxidant parameters in lungs and bronchoalveolar lavage fluid (BALF) of mice infected with a lethal dose of influenza A/PR8/34 virus. Viral infection was characterized by massive infiltration of leukocytes, mainly polymorphonuclear leukocytes, into the alveolar space. The total number of BALF cells increased up to 8-fold (day 3 post-infection) and these cells appeared activated as judged by their increased rates of superoxide anion radical (O2-.) generation upon stimulation. Maximal rates of radical generation by BALF cells during the early stages of infection were 15- or 70-fold higher than those of cells from control animals when expressed per cell or total BALF cells, respectively. At the terminal stages of infection the total capacity of BALF cells to release O2-. declined to approximately 35-fold the control values. Infection also resulted in increased in vivo formation of hydrogen peroxide (H2O2) within the lungs at a time that coincided with the maximal capacity of BALF cells to release O2-.. Whereas pulmonary activities of glutathione peroxidase and reductase remained unaltered, levels of ascorbate in the cell-free BALF decreased significantly during the early stages of the infection and then returned to normal levels and above, late in infection. The oxidation state of the dehydroascorbic acid/ascorbate couple increased concomitantly with the decrease in ascorbate concentrations early in infection and remained elevated throughout the infection. As assessed by the prevention of peroxyl radical-induced loss of phycoerythrin fluorescence, the total antioxidant capacity present in lung tissue homogenate from terminally ill animals was not diminished when compared to that prepared from lungs of control mice. We conclude that although early stages of influenza infection are associated with the presence of oxidative stress in the lung tissue and alveolar fluid lining the epithelial cells, this stress does not appear to overwhelm local antioxidant defenses. The results therefore do not support a direct causative role of oxidative tissue damage in the pathogenesis of influenza virus infection.