2 resultados para Deep waters

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Here we present stable isotope data for vertical profiles of dissolved molybdenum of the modern euxinic water columns of the Black Sea and two deeps of the Baltic Sea. Dissolved molybdenum in all water samples is depleted in salinity-normalized concentration and enriched in the heavy isotope (δ98Mo values up to + 2.9‰) compared to previously published isotope data of sedimentary molybdenum from the same range of water depths. Furthermore, δ98Mo values of all water samples from the Black Sea and anoxic deeps of the Baltic Sea are heavier than open ocean water. The observed isotope fractionation between sediments and the anoxic water column of the Black Sea are in line with the model of thiomolybdates that scavenge to particles under reducing conditions. An extrapolation to a theoretical pure MoS42− solution indicates a fractionation constant between MoS42− and authigenic solid Mo of 0.5 ± 0.3‰. Measured waters with all thiomolybdates coexisting in various proportions show larger but non-linear fractionation. The best explanation for our field observations is Mo scavenging by the thiomolybdates, dominantly — but not exclusively — present in the form of MoS42−. The Mo isotopic compositions of samples from the sediments and anoxic water column of the Baltic Sea are in overall agreement with those of the Black Sea at intermediate depth and corresponding sulphide concentrations. The more dynamic changes of redox conditions in the Baltic deeps complicate the Black Sea-derived relationship between thiomolybdates and Mo isotopic composition. In particular, the occasional flushing/mixing, of the deep waters, affects the corresponding water column and sedimentary data. δ98Mo values of the upper oxic waters of both basins are higher than predicted by mixing models based on salinity variations. The results can be explained by non-conservative behaviour of Mo under suboxic to anoxic conditions in the shallow bottom parts of the basin, most pronounced on the NW shelf of the Black Sea.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is expected that climate change will have significant impacts on ecosystems. Most model projections agree that the ocean will experience stronger stratification and less nutrient supply from deep waters. These changes will likely affect marine phytoplankton communities and will thus impact on the higher trophic levels of the oceanic food web. The potential consequences of future climate change on marine microbial communities can be investigated and predicted only with the help of mathematical models. Here we present the application of a model that describes aggregate properties of marine phytoplankton communities and captures the effects of a changing environment on their composition and adaptive capacity. Specifically, the model describes the phytoplankton community in terms of total biomass, mean cell size, and functional diversity. The model is applied to two contrasting regions of the Atlantic Ocean (tropical and temperate) and is tested under two emission scenarios: SRES A2 or “business as usual” and SRES B1 or “local utopia.” We find that all three macroecological properties will decline during the next century in both regions, although this effect will be more pronounced in the temperate region. Being consistent with previous model predictions, our results show that a simple trait-based modeling framework represents a valuable tool for investigating how phytoplankton communities may reorganize under a changing climate.