2 resultados para Deep transverse metatarsal ligaments

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lameness in horses due to pain originating from the proximal metacarpal/metatarsal region remains a diagnostic challenge. In cases of obvious lameness the pain can be localised to this region by diagnostic anaesthesia. Because a variety of disorders can cause lameness in this region different imaging modalities including radiography, ultrasonography and scintigraphy should be used to arrive at an accurate diagnosis. Even though a precise anatomic-pathologic diagnosis can still be an enigma, because not only bone and joints, but also soft tissue structures including the proximal suspensory ligament, its origin at the proximal metacarpus/ metatarsus, its fascia, the superficial fascia, as well as the intermetacarpal/metatarsal ligaments, the accessory ligament of the deep digital flexor tendon and both digital flexor tendons may be involved. Magnet resonance tomography (MRT) shows a high diagnostic sensitivity in imaging soft tissue structures and bone. In horses MRT is still at the beginning. The MRT appearance of the proximal metacarpal/metatarsal region has not yet been evaluated in detail and there are only few anatomic studies of the origin of the suspensory ligament in horses. The first experiences showed, that more gross and histologic examinations are necessary to fully interpret MRT-images and to differentiate pathologic alterations from clinically not relevant variations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES To evaluate the stabilizing function of atlanto-axial ligaments in dogs. STUDY DESIGN Cadaveric biomechanical study. ANIMALS Beagle dog cadavers (n = 10). METHODS The craniocervical region was collected from 10 Beagle cadavers, and the occipito-atlanto-axial region was prepared and freed from the surrounding muscles. Care was taken to preserve integrity of the atlantoaxial ligaments and atlantoaxial joint capsule. The atlanto-occipital joints were blocked with 2 diverging transarticular 1.8 mm positive threaded K-wires. Specimen extremities were embedded in polymethylmethacrylate (PMMA) and mounted on a simulator testing shear load at the atlantoaxial joint. Range of motion (ROM) and neutral zone (NZ) were determined with all ligaments intact, after cutting the apical ligament, both alar ligaments, the transverse ligaments and finally after cutting the dorsal atlantoaxial ligament. RESULTS ROM increased similarly and stepwise during testing. The most significant increase was observed after transection of the alar ligaments. CONCLUSION The alar ligaments seem to be the most important ligamentous structures for stabilization of the atlantoaxial joint under shear load.