32 resultados para Deep space optical communication
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Navigation of deep space probes is most commonly operated using the spacecraft Doppler tracking technique. Orbital parameters are determined from a series of repeated measurements of the frequency shift of a microwave carrier over a given integration time. Currently, both ESA and NASA operate antennas at several sites around the world to ensure the tracking of deep space probes. Just a small number of software packages are nowadays used to process Doppler observations. The Astronomical Institute of the University of Bern (AIUB) has recently started the development of Doppler data processing capabilities within the Bernese GNSS Software. This software has been extensively used for Precise Orbit Determination of Earth orbiting satellites using GPS data collected by on-board receivers and for subsequent determination of the Earth gravity field. In this paper, we present the currently achieved status of the Doppler data modeling and orbit determination capabilities in the Bernese GNSS Software using GRAIL data. In particular we will focus on the implemented orbit determination procedure used for the combined analysis of Doppler and intersatellite Ka-band data. We show that even at this earlier stage of the development we can achieve an accuracy of few mHz on two-way S-band Doppler observation and of 2 µm/s on KBRR data from the GRAIL primary mission phase.
Resumo:
When it comes to helping to shape sustainable development, research is most useful when it bridges the science–implementation/management gap and when it brings development specialists and researchers into a dialogue (Hurni et al. 2004); can a peer-reviewed journal contribute to this aim? In the classical system for validation and dissemination of scientific knowledge, journals focus on knowledge exchange within the academic community and do not specifically address a ‘life-world audience’. Within a North-South context, another knowledge divide is added: the peer review process excludes a large proportion of scientists from the South from participating in the production of scientific knowledge (Karlsson et al. 2007). Mountain Research and Development (MRD) is a journal whose mission is based on an editorial strategy to build the bridge between research and development and ensure that authors from the global South have access to knowledge production, ultimately with a view to supporting sustainable development in mountains. In doing so, MRD faces a number of challenges that we would like to discuss with the td-net community, after having presented our experience and strategy as editors of this journal. MRD was launched in 1981 by mountain researchers who wanted mountains to be included in the 1992 Rio process. In the late 1990s, MRD realized that the journal needed to go beyond addressing only the scientific community. It therefore launched a new section addressing a broader audience in 2000, with the aim of disseminating insights into, and recommendations for, the implementation of sustainable development in mountains. In 2006, we conducted a survey among MRD’s authors, reviewers, and readers (Wymann et al. 2007): respondents confirmed that MRD had succeeded in bridging the gap between research and development. But we realized that MRD could become an even more efficient tool for sustainability if development knowledge were validated: in 2009, we began submitting ‘development’ papers (‘transformation knowledge’) to external peer review of a kind different from the scientific-only peer review (for ‘systems knowledge’). At the same time, the journal became open access in order to increase the permeability between science and society, and ensure greater access for readers and authors in the South. We are currently rethinking our review process for development papers, with a view to creating more space for communication between science and society, and enhancing the co-production of knowledge (Roux 2008). Hopefully, these efforts will also contribute to the urgent debate on the ‘publication culture’ needed in transdisciplinary research (Kueffer et al. 2007).
Resumo:
Recent publications have renewed the debate regarding the number of foot compartments. There is also no consensus regarding allocation of individual muscles and communication between compartments. The current study examines the anatomic topography of the foot compartments anew using 32 injections of epoxy-resin and subsequent sheet plastination in 12 cadaveric foot specimens. Six compartments were identified: dorsal, medial, lateral, superficial central, deep forefoot, and deep hindfoot compartments. Communication was evident between the deep hindfoot compartment and the superficial central and deep central forefoot compartments. In the hindfoot, the neurovascular bundles were located in separate tissue sheaths between the central hindfoot compartment and the medial compartment. In the forefoot, the medial and lateral bundles entered the deep central forefoot compartment. The deep central hindfoot compartment housed the quadratus plantae muscle, and after calcaneus fracture could develop an isolated compartment syndrome.
Resumo:
Hybrid molds enable the fabrication of polymeric parts with features of different length scales by injection molding. The resulting polymer microelements combine optical or biological functionalities with designed mechanical properties. Two applications are chosen for illustration of this concept: As a first example, microelements for optical communication via fiber-to-fiber coupling are manufactured by combining two molds to a small mold insert. Both molds are fabricated using lithography and electroplating. As a second example, microcantilevers (μCs) for chemical sensing are surface patterned using a modular mold composed of a laser-machined cavity defining the geometry of the μCs, and an opposite flat tool side which is covered by a patterned polymer foil. Injection molding results in an array of 35 μm-thick μCs with microscale surface topographies. In both cases, when the mold is assembled and closed, reliefs are transferred onto one surface of the molded element whose outlines are defined by the micromold cavity. The main advantage of these hybrid methods lies in the simple integration of optical surface structures and gratings onto the surface of microcomponents with different sizes and orientations. This allows for independent development of functional properties and combinations thereof.