4 resultados para Deep Belief Network, Deep Learning, Gaze, Head Pose, Surveillance, Unsupervised Learning
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network
Resumo:
Automated tissue characterization is one of the most crucial components of a computer aided diagnosis (CAD) system for interstitial lung diseases (ILDs). Although much research has been conducted in this field, the problem remains challenging. Deep learning techniques have recently achieved impressive results in a variety of computer vision problems, raising expectations that they might be applied in other domains, such as medical image analysis. In this paper, we propose and evaluate a convolutional neural network (CNN), designed for the classification of ILD patterns. The proposed network consists of 5 convolutional layers with 2×2 kernels and LeakyReLU activations, followed by average pooling with size equal to the size of the final feature maps and three dense layers. The last dense layer has 7 outputs, equivalent to the classes considered: healthy, ground glass opacity (GGO), micronodules, consolidation, reticulation, honeycombing and a combination of GGO/reticulation. To train and evaluate the CNN, we used a dataset of 14696 image patches, derived by 120 CT scans from different scanners and hospitals. To the best of our knowledge, this is the first deep CNN designed for the specific problem. A comparative analysis proved the effectiveness of the proposed CNN against previous methods in a challenging dataset. The classification performance (~85.5%) demonstrated the potential of CNNs in analyzing lung patterns. Future work includes, extending the CNN to three-dimensional data provided by CT volume scans and integrating the proposed method into a CAD system that aims to provide differential diagnosis for ILDs as a supportive tool for radiologists.
Resumo:
The medical education community is working-across disciplines and across the continuum-to address the current challenges facing the medical education system and to implement strategies to improve educational outcomes. Educational technology offers the promise of addressing these important challenges in ways not previously possible. The authors propose a role for virtual patients (VPs), which they define as multimedia, screen-based interactive patient scenarios. They believe VPs offer capabilities and benefits particularly well suited to addressing the challenges facing medical education. Well-designed, interactive VP-based learning activities can promote the deep learning that is needed to handle the rapid growth in medical knowledge. Clinically oriented learning from VPs can capture intrinsic motivation and promote mastery learning. VPs can also enhance trainees' application of foundational knowledge to promote the development of clinical reasoning, the foundation of medical practice. Although not the entire solution, VPs can support competency-based education. The data created by the use of VPs can serve as the basis for multi-institutional research that will enable the medical education community both to better understand the effectiveness of educational interventions and to measure progress toward an improved system of medical education.
Resumo:
The study assessed the brain electric mechanisms of light and deep hypnotic conditions in the framework of EEG temporal microstates. Multichannel EEG of healthy volunteers during initial resting, light hypnosis, deep hypnosis, and eventual recovery was analyzed into temporal EEG microstates of four classes. Microstates are defined by the spatial configuration of their potential distribution maps ([Symbol: see text]potential landscapes') on the head surface. Because different potential landscapes must have been generated by different active neural assemblies, it is reasonable to assume that they also incorporate different brain functions. The observed four microstate classes were very similar to the four standard microstate classes A, B, C, D [Koenig, T. et al. Neuroimage, 2002;16: 41-8] and were labeled correspondingly. We expected a progression of microstate characteristics from initial resting to light to deep hypnosis. But, all three microstate parameters (duration, occurrence/second and %time coverage) yielded values for initial resting and final recovery that were between those of the two hypnotic conditions of light and deep hypnosis. Microstates of the classes B and D showed decreased duration, occurrence/second and %time coverage in deep hypnosis compared to light hypnosis; this was contrary to microstates of classes A and C which showed increased values of all three parameters. Reviewing the available information about microstates in other conditions, the changes from resting to light hypnosis in certain respects are reminiscent of changes to meditation states, and changes to deep hypnosis of those in schizophrenic states.
Resumo:
Diet management is a key factor for the prevention and treatment of diet-related chronic diseases. Computer vision systems aim to provide automated food intake assessment using meal images. We propose a method for the recognition of already segmented food items in meal images. The method uses a 6-layer deep convolutional neural network to classify food image patches. For each food item, overlapping patches are extracted and classified and the class with the majority of votes is assigned to it. Experiments on a manually annotated dataset with 573 food items justified the choice of the involved components and proved the effectiveness of the proposed system yielding an overall accuracy of 84.9%.