23 resultados para Deductive Reasoning
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Background: The design of Virtual Patients (VPs) is essential. So far there are no validated evaluation instruments for VP design published. Summary of work: We examined three sources of validity evidence of an instrument to be filled out by students aimed at measuring the quality of VPs with a special emphasis on fostering clinical reasoning: (1) Content was examined based on theory of clinical reasoning and an international VP expert team. (2) Response process was explored in think aloud pilot studies with students and content analysis of free text questions accompanying each item of the instrument. (3) Internal structure was assessed by confirmatory factor analysis (CFA) using 2547 student evaluations and reliability was examined utilizing generalizability analysis. Summary of results: Content analysis was supported by theory underlying Gruppen and Frohna’s clinical reasoning model on which the instrument is based and an international VP expert team. The pilot study and analysis of free text comments supported the validity of the instrument. The CFA indicated that a three factor model comprising 6 items showed a good fit with the data. Alpha coefficients per factor were 0,74 - 0,82. The findings of the generalizability studies indicated that 40-200 student responses are needed in order to obtain reliable data on one VP. Conclusions: The described instrument has the potential to provide faculty with reliable and valid information about VP design. Take-home messages: We present a short instrument which can be of help in evaluating the design of VPs.
Resumo:
A social Semantic Web empowers its users to have access to collective Web knowledge in a simple manner, and for that reason, controlling online privacy and reputation becomes increasingly important, and must be taken seriously. This chapter presents Fuzzy Cognitive Maps (FCM) as a vehicle for Web knowledge aggregation, representation, and reasoning. With this in mind, a conceptual framework for Web knowledge aggregation, representation, and reasoning is introduced along with a use case, in which the importance of investigative searching for online privacy and reputation is highlighted. Thereby it is demonstrated how a user can establish a positive online presence.
Resumo:
Researchers suggest that personalization on the Semantic Web adds up to a Web 3.0 eventually. In this Web, personalized agents process and thus generate the biggest share of information rather than humans. In the sense of emergent semantics, which supplements traditional formal semantics of the Semantic Web, this is well conceivable. An emergent Semantic Web underlying fuzzy grassroots ontology can be accomplished through inducing knowledge from users' common parlance in mutual Web 2.0 interactions [1]. These ontologies can also be matched against existing Semantic Web ontologies, to create comprehensive top-level ontologies. On the Web, if augmented with information in the form of restrictions andassociated reliability (Z-numbers) [2], this collection of fuzzy ontologies constitutes an important basis for an implementation of Zadeh's restriction-centered theory of reasoning and computation (RRC) [3]. By considering real world's fuzziness, RRC differs from traditional approaches because it can handle restrictions described in natural language. A restriction is an answer to a question of the value of a variable such as the duration of an appointment. In addition to mathematically well-defined answers, RRC can likewise deal with unprecisiated answers as "about one hour." Inspired by mental functions, it constitutes an important basis to leverage present-day Web efforts to a natural Web 3.0. Based on natural language information, RRC may be accomplished with Z-number calculation to achieve a personalized Web reasoning and computation. Finally, through Web agents' understanding of natural language, they can react to humans more intuitively and thus generate and process information.
Resumo:
Traditionally, ontologies describe knowledge representation in a denotational, formalized, and deductive way. In addition, in this paper, we propose a semiotic, inductive, and approximate approach to ontology creation. We define a conceptual framework, a semantics extraction algorithm, and a first proof of concept applying the algorithm to a small set of Wikipedia documents. Intended as an extension to the prevailing top-down ontologies, we introduce an inductive fuzzy grassroots ontology, which organizes itself organically from existing natural language Web content. Using inductive and approximate reasoning to reflect the natural way in which knowledge is processed, the ontology’s bottom-up build process creates emergent semantics learned from the Web. By this means, the ontology acts as a hub for computing with words described in natural language. For Web users, the structural semantics are visualized as inductive fuzzy cognitive maps, allowing an initial form of intelligence amplification. Eventually, we present an implementation of our inductive fuzzy grassroots ontology Thus,this paper contributes an algorithm for the extraction of fuzzy grassroots ontologies from Web data by inductive fuzzy classification.