6 resultados para Decoration and ornament, Gothic.

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four seasons of excavations at Horvat Kur in the Galilee (250570/754485) have exposed the remains of a broadhouse synagogue from the Byzantine period. The building was entered through a portico on the west or a doorway on the south. The fill beneath the portico included the discarded remains of a once colored mosaic as well as more than 1000 coins. A low bench of basalt stones (some of which were plastered) runs along the interior walls, interrupted only by a stone bemah in the center of the southern wall. The synagogue is thus oriented toward Jerusalem. Near the bemah, an ornamented limestone seat was found in situ atop the bench. The building underwent several changes and repairs in the course of its lifespan. On either side of the bemah, north-south rows of columns rested on stylobate. A basalt stone table was found in re-use in the eastern stylobate. Nicknamed “the Horvat Kur stone,” this monolith features geometric figures on three sides and figurative representations on one side. Its original function is as yet subject of research. A narrow test-trench into the sediment of a cistern located outside the northern wall of the synagogue has produced nearly thirty intact vessels of the early Byzantine period, mostly cooking pots and water jars. In addition a dense sequence of pollen samples has been taken. Preliminary interpretation of these finds indicates that the Horvat Kur synagogue illustrates Byzantine synagogue construction, decoration, and use in the setting of a Galilean village of modest economic circumstances.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Virus-like particles (VLPs) are non-infectious self-assembling nanoparticles, useful in medicine and nanotechnology. Their repetitive molecularly-defined architecture is attractive for engineering multivalency, notably for vaccination. However, decorating VLPs with target-antigens by genetic fusion or chemical modification is time-consuming and often leads to capsid misassembly or antigen misfolding, hindering generation of protective immunity. Here we establish a platform for irreversibly decorating VLPs simply by mixing with protein antigen. SpyCatcher is a genetically-encoded protein designed to spontaneously form a covalent bond to its peptide-partner SpyTag. We expressed in E. coli VLPs from the bacteriophage AP205 genetically fused to SpyCatcher. We demonstrated quantitative covalent coupling to SpyCatcher-VLPs after mixing with SpyTag-linked to malaria antigens, including CIDR and Pfs25. In addition, we showed coupling to the VLPs for peptides relevant to cancer from epidermal growth factor receptor and telomerase. Injecting SpyCatcher-VLPs decorated with a malarial antigen efficiently induced antibody responses after only a single immunization. This simple, efficient and modular decoration of nanoparticles should accelerate vaccine development, as well as other applications of nanoparticle devices.