21 resultados para Decomposition of Ranked Models

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: This paper examines four different levels of possible variation in symptom reporting: occasion, day, person and family. DESIGN: In order to rule out effects of retrospection, concurrent symptom reporting was assessed prospectively using a computer-assisted self-report method. METHODS: A decomposition of variance in symptom reporting was conducted using diary data from families with adolescent children. We used palmtop computers to assess concurrent somatic complaints from parents and children six times a day for seven consecutive days. In two separate studies, 314 and 254 participants from 96 and 77 families, respectively, participated. A generalized multilevel linear models approach was used to analyze the data. Symptom reports were modelled using a logistic response function, and random effects were allowed at the family, person and day level, with extra-binomial variation allowed for on the occasion level. RESULTS: Substantial variability was observed at the person, day and occasion level but not at the family level. CONCLUSIONS: To explain symptom reporting in normally healthy individuals, situational as well as person characteristics should be taken into account. Family characteristics, however, would not help to clarify symptom reporting in all family members.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Postmortem decomposition of brain tissue was investigated by (1)H-magnetic resonance spectroscopy (MRS) in a sheep head model and selected human cases. Aiming at the eventual estimation of postmortem intervals in forensic medicine, this study focuses on the characterization and identification of newly observed metabolites. In situ single-voxel (1)H-MRS at 1.5 T was complemented by multidimensional homo- and heteronuclear high-resolution NMR spectroscopy of an extract of sheep brain tissue. The inclusion of spectra of model solutions in the program LC Model confirmed the assignments in situ. The first postmortem phase was characterized mainly by changes in the concentrations of metabolites usually observed in vivo and by the appearance of previously reported decay products. About 3 days postmortem, new metabolites, including free trimethylammonium, propionate, butyrate, and iso-butyrate, started to appear in situ. Since the observed metabolites and the time course is comparable in sheep and human brain tissue, the model system seems to be appropriate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An appropriate model of recent human evolution is not only important to understand our own history, but it is necessary to disentangle the effects of demography and selection on genome diversity. Although most genetic data support the view that our species originated recently in Africa, it is still unclear if it completely replaced former members of the Homo genus, or if some interbreeding occurred during its range expansion. Several scenarios of modern human evolution have been proposed on the basis of molecular and paleontological data, but their likelihood has never been statistically assessed. Using DNA data from 50 nuclear loci sequenced in African, Asian and Native American samples, we show here by extensive simulations that a simple African replacement model with exponential growth has a higher probability (78%) as compared with alternative multiregional evolution or assimilation scenarios. A Bayesian analysis of the data under this best supported model points to an origin of our species approximately 141 thousand years ago (Kya), an exit out-of-Africa approximately 51 Kya, and a recent colonization of the Americas approximately 10.5 Kya. We also find that the African replacement model explains not only the shallow ancestry of mtDNA or Y-chromosomes but also the occurrence of deep lineages at some autosomal loci, which has been formerly interpreted as a sign of interbreeding with Homo erectus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Frequency-transformed EEG resting data has been widely used to describe normal and abnormal brain functional states as function of the spectral power in different frequency bands. This has yielded a series of clinically relevant findings. However, by transforming the EEG into the frequency domain, the initially excellent time resolution of time-domain EEG is lost. The topographic time-frequency decomposition is a novel computerized EEG analysis method that combines previously available techniques from time-domain spatial EEG analysis and time-frequency decomposition of single-channel time series. It yields a new, physiologically and statistically plausible topographic time-frequency representation of human multichannel EEG. The original EEG is accounted by the coefficients of a large set of user defined EEG like time-series, which are optimized for maximal spatial smoothness and minimal norm. These coefficients are then reduced to a small number of model scalp field configurations, which vary in intensity as a function of time and frequency. The result is thus a small number of EEG field configurations, each with a corresponding time-frequency (Wigner) plot. The method has several advantages: It does not assume that the data is composed of orthogonal elements, it does not assume stationarity, it produces topographical maps and it allows to include user-defined, specific EEG elements, such as spike and wave patterns. After a formal introduction of the method, several examples are given, which include artificial data and multichannel EEG during different physiological and pathological conditions.