2 resultados para Deadenylation

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nonsense-mediated mRNA decay (NMD) pathway is responsible for the rapid degradation of eukaryotic mRNAs on which ribosomes fail to terminate translation properly. NMD thereby contributes to the elimination of aberrant mRNAs, improving the fidelity of gene expression, but also serves to regulate gene expression at the post-transcriptional level. Here we discuss recent evidence as to how and where mRNAs targeted to NMD are degraded in human cells. We discuss accumulating evidence that the decay step of human NMD can be initiated by two different mechanisms: either by SMG6-mediated endonucleolytic cleavage near the aberrant stop codon, or by deadenylation and decapping. While there is evidence that mRNAs targeted for NMD have the capacity to accumulate with other translationally repressed mRNAs in P-bodies, there is currently no evidence that this is required for the degradation of the NMD substrate. It therefore remains an open question whether NMD in human cells is restricted to a particular cellular location or whether it can be initiated wherever translation of the NMD substrate takes place

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite over 30 years of research, the molecular mechanisms of nonsense-mediated mRNA decay (NMD) are still not well understood. NMD appears to exist in most eukaryotes and is intensively studied in S. cerevisiae, C. elegans, D. melanogaster and in mammalian cells. Current evidence suggests that the core of NMD – involving UPF1, UPF2 and UPF3 – is evolutionarily conserved, but that different species may have evolved slightly different ways to identify target mRNAs for NMD and to degrade them. Our lab has shown that the exon junction complex (EJC) is not absolutely required for NMD in human cells (Bühler et al., NSMB 2006) and that it is neither restricted to CBP80-bound mRNAs as classical models claim (Rufener & Mühlemann, NSMB 2013). Together with the finding that long 3’ UTRs often are an NMD-inducing feature (Eberle et al, PLoS Biol 2008; Yepiskoposyan et al., RNA 2011), our data is consistent with much of the data from other species and hence has led to a “unified” working model for NMD (Stalder & Mühlemann, Trends Cell Biol 2008; Schweingruber et al., Biochim Biophys Acta 2013). Our recent iCLIP experiments with endogenous UPF1 indicate that UPF1 binds mRNAs indiscriminately with respect to being an NMD target or not before they engage with ribosomes (Zünd et al., NSMB 2013). After onset of translation, UPF1 is cleared from the coding region but remains bound to the 3’ UTR of mRNAs. Why this 3’ UTR-associated in some cases induces NMD and in others not is currently being investigated and not yet understood. Following assembly of a phospho-UPF1-containing NMD complex, decay adaptors (SMG5, SMG7, PNRC2) and/or the endonuclease SMG6 are recruited. While the latter cleaves the mRNA in the vicinity of the termination codon, the former proteins induce deadenylation, decapping and exonucleolytic degradation of the mRNA. In my talk, I will give an overview about the latest developments in NMD – with a focus on our own work – and try to integrate the bits and pieces into a somewhat coherent working model.