5 resultados para Dawkins
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
This study sought to assess the impact of the SYNTAX (Synergy Between Percutaneous Coronary Intervention With Taxus and Cardiac Surgery) score (SXscore) on clinical outcomes in patients undergoing percutaneous coronary intervention.
Resumo:
The SYNTAX score (SXscore), an anatomical-based scoring tool reflecting the complexity of coronary anatomy, has established itself as an important long-term prognostic factor in patients undergoing percutaneous coronary intervention (PCI). The incorporation of clinical factors may further augment the utility of the SXscore to longer-term risk stratify the individual patient for clinical outcomes.
Resumo:
OBJECTIVES This study sought to validate the Logistic Clinical SYNTAX (Synergy Between Percutaneous Coronary Intervention With Taxus and Cardiac Surgery) score in patients with non-ST-segment elevation acute coronary syndromes (ACS), in order to further legitimize its clinical application. BACKGROUND The Logistic Clinical SYNTAX score allows for an individualized prediction of 1-year mortality in patients undergoing contemporary percutaneous coronary intervention. It is composed of a "Core" Model (anatomical SYNTAX score, age, creatinine clearance, and left ventricular ejection fraction), and "Extended" Model (composed of an additional 6 clinical variables), and has previously been cross validated in 7 contemporary stent trials (>6,000 patients). METHODS One-year all-cause death was analyzed in 2,627 patients undergoing percutaneous coronary intervention from the ACUITY (Acute Catheterization and Urgent Intervention Triage Strategy) trial. Mortality predictions from the Core and Extended Models were studied with respect to discrimination, that is, separation of those with and without 1-year all-cause death (assessed by the concordance [C] statistic), and calibration, that is, agreement between observed and predicted outcomes (assessed with validation plots). Decision curve analyses, which weight the harms (false positives) against benefits (true positives) of using a risk score to make mortality predictions, were undertaken to assess clinical usefulness. RESULTS In the ACUITY trial, the median SYNTAX score was 9.0 (interquartile range 5.0 to 16.0); approximately 40% of patients had 3-vessel disease, 29% diabetes, and 85% underwent drug-eluting stent implantation. Validation plots confirmed agreement between observed and predicted mortality. The Core and Extended Models demonstrated substantial improvements in the discriminative ability for 1-year all-cause death compared with the anatomical SYNTAX score in isolation (C-statistics: SYNTAX score: 0.64, 95% confidence interval [CI]: 0.56 to 0.71; Core Model: 0.74, 95% CI: 0.66 to 0.79; Extended Model: 0.77, 95% CI: 0.70 to 0.83). Decision curve analyses confirmed the increasing ability to correctly identify patients who would die at 1 year with the Extended Model versus the Core Model versus the anatomical SYNTAX score, over a wide range of thresholds for mortality risk predictions. CONCLUSIONS Compared to the anatomical SYNTAX score alone, the Core and Extended Models of the Logistic Clinical SYNTAX score more accurately predicted individual 1-year mortality in patients presenting with non-ST-segment elevation acute coronary syndromes undergoing percutaneous coronary intervention. These findings support the clinical application of the Logistic Clinical SYNTAX score.
Resumo:
BACKGROUND Drug eluting stents with durable polymers may be associated with hypersensitivity, delayed healing, and incomplete endothelialization, which may contribute to late/very late stent thrombosis and the need for prolonged dual antiplatelet therapy. Bioabsorbable polymers may facilitate stent healing, thus enhancing clinical safety. The SYNERGY stent is a thin-strut, platinum chromium metal alloy platform with an ultrathin bioabsorbable Poly(D,L-lactide-co-glycolide) abluminal everolimus-eluting polymer. We performed a multicenter, randomized controlled trial for regulatory approval to determine noninferiority of the SYNERGY stent to the durable polymer PROMUS Element Plus everolimus-eluting stent. METHODS AND RESULTS Patients (n=1684) scheduled to undergo percutaneous coronary intervention for non-ST-segment-elevation acute coronary syndrome or stable coronary artery disease were randomized to receive either the SYNERGY stent or the PROMUS Element Plus stent. The primary end point of 12-month target lesion failure was observed in 6.7% of SYNERGY and 6.5% PROMUS Element Plus treated subjects by intention-to-treat (P=0.83 for difference; P=0.0005 for noninferiority), and 6.4% in both the groups by per-protocol analysis (P=0.0003 for noninferiority). Clinically indicated revascularization of the target lesion or definite/probable stent thrombosis were observed in 2.6% versus 1.7% (P=0.21) and 0.4% versus 0.6% (P=0.50) of SYNERGY versus PROMUS Element Plus-treated subjects, respectively. CONCLUSIONS In this randomized trial, the SYNERGY bioabsorbable polymer everolimus-eluting stent was noninferior to the PROMUS Element Plus everolimus-eluting stent with respect to 1-year target lesion failure. These data support the relative safety and efficacy of SYNERGY in a broad range of patients undergoing percutaneous coronary intervention. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT01665053.
Resumo:
Analyzing the type and frequency of patient-specific mutations that give rise to Duchenne muscular dystrophy (DMD) is an invaluable tool for diagnostics, basic scientific research, trial planning, and improved clinical care. Locus-specific databases allow for the collection, organization, storage, and analysis of genetic variants of disease. Here, we describe the development and analysis of the TREAT-NMD DMD Global database (http://umd.be/TREAT_DMD/). We analyzed genetic data for 7,149 DMD mutations held within the database. A total of 5,682 large mutations were observed (80% of total mutations), of which 4,894 (86%) were deletions (1 exon or larger) and 784 (14%) were duplications (1 exon or larger). There were 1,445 small mutations (smaller than 1 exon, 20% of all mutations), of which 358 (25%) were small deletions and 132 (9%) small insertions and 199 (14%) affected the splice sites. Point mutations totalled 756 (52% of small mutations) with 726 (50%) nonsense mutations and 30 (2%) missense mutations. Finally, 22 (0.3%) mid-intronic mutations were observed. In addition, mutations were identified within the database that would potentially benefit from novel genetic therapies for DMD including stop codon read-through therapies (10% of total mutations) and exon skipping therapy (80% of deletions and 55% of total mutations).