3 resultados para David Thompson
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Abstract: The 5-HT3 receptor is one of several ion channels responsible for the transmission of nerve impulses in the peripheral and central nervous systems. Until now, it has been difficult to characterize transmembrane receptors with classical structural biology approaches like X-ray crystallography. The use of photoaffinity probes is an alternative approach to identify regions in the protein where small molecules bind. To this end, we present two photoaffinity probes based on granisetron, a well known antagonist of the 5-HT3 receptor. These new probes show nanomolar binding affinity for the orthosteric binding site. In addition, we investigated their reactivity using irradiation experiments.
Resumo:
The pharmacological characterization of ligands depends upon the ability to accurately measure their binding properties. Fluorescence provides an alternative to more traditional approaches such as radioligand binding. Here we describe the binding and spectroscopic properties of eight fluorescent 5-HT3 receptor ligands. These were tested on purified receptors, expressed receptors on live cells, or in vivo. All compounds had nanomolar affinities with fluorescent properties extending from blue to near infra-red emission. A fluorescein-derivative had the highest affinity as measured by fluorescence polarization (FP; 1.14 nM), flow cytometry (FC; 3.23 nM) and radioligand binding (RB; 1.90 nM). Competition binding with unlabeled 5-HT3 receptor agonists (5-HT, mCPBG, quipazine) and antagonists (granisetron, palonosetron, tropisetron) yielded similar affinities in all three assays. When cysteine substitutions were introduced into the 5-HT3 receptor binding site the same changes in binding affinity were seen for both granisetron and the fluorescein-derivative, suggesting that they both adopt orientations that are consistent with co-crystal structures of granisetron with a homologous protein (5HTBP). As expected, in vivo live imaging in anaesthetized mice revealed staining in the abdominal cavity in intestines, but also in salivary glands. The unexpected presence of 5-HT3 receptors in mouse salivary glands was confirmed by Western blots. Overall, these results demonstrate the wide utility of our new high-affinity fluorescently-labeled 5-HT3 receptor probes, ranging from in vitro receptor pharmacology, including FC and FP ligand competition, to live imaging of 5-HT3 expressing tissues.