16 resultados para Daughter
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
A fair number of Cicero's letters reveal his concern for his daughter Tullia and his son Marcus. Recent scholarship has read these letters as evidence for a ‘natural’ emotional attachment of a father to his children, in reaction to Philippe Ariès's opposite claim. This chapter considers whether Cicero's letters can be analysed only as expressions of paternal affection. The fact that the pater familias Cicero occupies a political position simultaneously in his nuclear family, his domus, and the Senate, results in a concern for his prestige within the social field of the aristocracy. And this concern is necessarily conferred upon his support of the education and the social and political career of his children. The chapter traces the gender-specific differences between Cicero's treatment of Tullia and Marcus, shows the social construction of parental affection, and contributes to a further understanding of the different functions of daughters and sons in the social force field of family memory.
Resumo:
The liver stage of the Plasmodium parasite remains one of the most promising targets for intervention against malaria as it is clinically silent, precedes the symptomatic blood stage and represents a bottleneck in the parasite life cycle. However, many aspects of the development of the parasite during this stage are far from understood. During the liver stage, the parasite undergoes extensive replication, forming tens of thousands of infectious merozoites from each invading sporozoite. This implies a very efficient and accurate process of cytokinesis and thus also of organelle development and segregation. We have generated for the first time Plasmodium berghei double-fluorescent parasite lines, allowing visualization of the apicoplast, mitochondria and nuclei in live liver stage parasites. Using these we have seen that in parallel with nuclear division, the apicoplast and mitochondrion become two extensively branched and intertwining structures. The organelles then undergo impressive morphological and positional changes prior to cell division. To form merozoites, the parasite undergoes cytokinesis and the complex process of organelle development and segregation into the forming daughter merozoites could be analysed in detail using the newly generated transgenic parasites.
Resumo:
In summer 1866 the Austro-Prussian struggle for supremacy in Germany erupted into open conflict. King Georg V of Hanover sided with other governments loyal to the German Confederation against Prussia, but after initially defeating Prussian forces at Langensalza, he was forced to capitulate. Two days after the battle, on June 29, 1866, the widow of the Hanoverian general Sir Georg Julius von Hartmann told her daughter in no uncertain terms how she felt about the Prussian government and its allies. In her opinion they were nothing more than “robber states” that cloaked their disregard for the Ten Commandments in sanctimonious public displays of piety. “These Protestant Jesuits,” she continued, “offend me more than the Catholic ones. You know that I am German with all my heart and love my Germany, but I cannot consider them genuine Germans anymore because they only want to make Germany Prussian.”
Resumo:
The protozoan parasite Theileria inhabits the host cell cytoplasm and possesses the unique capacity to transform the cells it infects, inducing continuous proliferation and protection against apoptosis. The transforming schizont is a multinucleated syncytium that resides free in the host cell cytoplasm and is strictly intracellular. To maintain transformation, it is crucial that this syncytium is divided over the two daughter cells at each host cell cytokinesis. This process was dissected using different cell cycle synchronization methods in combination with the targeted application of specific inhibitors. We found that Theileria schizonts associate with newly formed host cell microtubules that emanate from the spindle poles, positioning the parasite at the equatorial region of the mitotic cell where host cell chromosomes assemble during metaphase. During anaphase, the schizont interacts closely with host cell central spindle. As part of this process, the schizont recruits a host cell mitotic kinase, Polo-like kinase 1, and we established that parasite association with host cell central spindles requires Polo-like kinase 1 catalytic activity. Blocking the interaction between the schizont and astral as well as central spindle microtubules prevented parasite segregation between the daughter cells during cytokinesis. Our findings provide a striking example of how an intracellular eukaryotic pathogen that evolved ways to induce the uncontrolled proliferation of the cells it infects usurps the host cell mitotic machinery, including Polo-like kinase 1, one of the pivotal mitotic kinases, to ensure its own persistence and survival.
Resumo:
OBJECTIVE: During postnatal development, mammalian articular cartilage acts as a surface growth plate for the underlying epiphyseal bone. Concomitantly, it undergoes a fundamental process of structural reorganization from an immature isotropic to a mature (adult) anisotropic architecture. However, the mechanism underlying this structural transformation is unknown. It could involve either an internal remodelling process, or complete resorption followed by tissue neoformation. The aim of this study was to establish which of these two alternative tissue reorganization mechanisms is physiologically operative. We also wished to pinpoint the articular cartilage source of the stem cells for clonal expansion and the zonal location of the chondrocyte pool with high proliferative activity. METHODS: The New Zealand white rabbit served as our animal model. The analysis was confined to the high-weight-bearing (central) areas of the medial and lateral femoral condyles. After birth, the articular cartilage layer was evaluated morphologically at monthly intervals from the first to the eighth postnatal month, when this species attains skeletal maturity. The overall height of the articular cartilage layer at each juncture was measured. The growth performance of the articular cartilage layer was assessed by calcein labelling, which permitted an estimation of the daily growth rate of the epiphyseal bone and its monthly length-gain. The slowly proliferating stem-cell pool was identified immunohistochemically (after labelling with bromodeoxyuridine), and the rapidly proliferating chondrocyte population by autoradiography (after labelling with (3)H-thymidine). RESULTS: The growth activity of the articular cartilage layer was highest 1 month after birth. It declined precipitously between the first and third months, and ceased between the third and fourth months, when the animal enters puberty. The structural maturation of the articular cartilage layer followed a corresponding temporal trend. During the first 3 months, when the articular cartilage layer is undergoing structural reorganization, the net length-gain in the epiphyseal bone exceeded the height of the articular cartilage layer. This finding indicates that the postnatal reorganization of articular cartilage from an immature isotropic to a mature anisotropic structure is not achieved by a process of internal remodelling, but by the resorption and neoformation of all zones except the most superficial (stem-cell) one. The superficial zone was found to consist of slowly dividing stem cells with bidirectional mitotic activity. In the horizontal direction, this zone furnishes new stem cells that replenish the pool and effect a lateral expansion of the articular cartilage layer. In the vertical direction, the superficial zone supplies the rapidly dividing, transit-amplifying daughter-cell pool that feeds the transitional and upper radial zones during the postnatal growth phase of the articular cartilage layer. CONCLUSIONS: During postnatal development, mammalian articular cartilage fulfils a dual function, viz., it acts not only as an articulating layer but also as a surface growth plate. In the lapine model, this growth activity ceases at puberty (3-4 months of age), whereas that of the true (metaphyseal) growth plate continues until the time of skeletal maturity (8 months). Hence, the two structures are regulated independently. The structural maturation of the articular cartilage layer coincides temporally with the cessation of its growth activity - for the radial expansion and remodelling of the epiphyseal bone - and with sexual maturation. That articular cartilage is physiologically reorganized by a process of tissue resorption and neoformation, rather than by one of internal remodelling, has important implications for the functional engineering and repair of articular cartilage tissue.
Resumo:
We report on a father and daughter with hand-foot-genital syndrome (HFGS) with typical skeletal and genitourinary anomalies due to a 14-residue polyalanine expansion in HOXA13. This is the largest (32 residues) polyalanine tract so far described for any polyalanine mutant protein. Polyalanine expansion results in protein misfolding, cytoplasmic aggregation and degradation; however, HOXA13 polyalanine expansions appear to act as loss of function mutations in contrast to gain of function for HOXD13 polyalanine expansions. To address this paradox we examined the cellular consequences of polyalanine expansions on HOXA13 protein using COS cell transfection and immunocytochemistry. HOXA13 polyalanine expansion proteins form cytoplasmic aggregates, and distribution between cytoplasmic aggregates or the nucleus is polyalanine tract size-dependent. Geldanamycin, an Hsp90 inhibitor, reduces the steady-state abundance of all polyalanine-expanded proteins in transfected cells. We also found that wild-type HOXA13 or HOXD13 proteins are sequestered in HOXA13 polyalanine expansion cytoplasmic aggregates. Thus, the difference between HOXA13 polyalanine expansion loss-of-function and HOXD13 polyalanine expansion dominant-negative effect is not the ability to aggregate wild-type group 13 paralogs but perhaps to variation in activities associated with refolding, aggregation or degradation of the proteins.
Resumo:
In most mammals, dispersal rates are higher in males than in females. Using behavioural and genetic data of individually marked bats, we show that this general pattern is reversed in the greater sac-winged bat (Saccopteryx bilineata). Dispersal is significantly female biased and male philopatry in combination with rare male immigration causes a patrilineal colony structure. Female dispersal helps avoid father-daughter inbreeding, as male tenure exceeds female age at first breeding in this bat species. Furthermore, our data suggest that females may engage in extra-harem copulations to mate with genetically dissimilar males, and thus avoid their male descendants as mating partners. Acquaintance with the natal colony might facilitate territory takeover since male sac-winged bats queue for harem access. Given the virtual absence of male immigration and the possible lower reproductive success of dispersing males, we argue that enhancing the likelihood of settlement of male descendants could be adaptive despite local mate competition. We conclude that resource defence by males is important in promoting male philopatry, and argue that the potential overlap of male tenure and female first conception is the driving force for females to disperse.
Resumo:
The apicomplexan parasite Theileria annulata transforms infected host cells, inducing uncontrolled proliferation and clonal expansion of the parasitized cell population. Shortly after sporozoite entry into the target cell, the surrounding host cell membrane is dissolved and an array of host cell microtubules (MTs) surrounds the parasite, which develops into the transforming schizont. The latter does not egress to invade and transform other cells. Instead, it remains tethered to host cell MTs and, during mitosis and cytokinesis, engages the cell's astral and central spindle MTs to secure its distribution between the two daughter cells. The molecular mechanism by which the schizont recruits and stabilizes host cell MTs is not known. MT minus ends are mostly anchored in the MT organizing center, while the plus ends explore the cellular space, switching constantly between phases of growth and shrinkage (called dynamic instability). Assuming the plus ends of growing MTs provide the first point of contact with the parasite, we focused on the complex protein machinery associated with these structures. We now report how the schizont recruits end-binding protein 1 (EB1), a central component of the MT plus end protein interaction network and key regulator of host cell MT dynamics. Using a range of in vitro experiments, we demonstrate that T. annulata p104, a polymorphic antigen expressed on the schizont surface, functions as a genuine EB1-binding protein and can recruit EB1 in the absence of any other parasite proteins. Binding strictly depends on a consensus SxIP motif located in a highly disordered C-terminal region of p104. We further show that parasite interaction with host cell EB1 is cell cycle regulated. This is the first description of a pathogen-encoded protein to interact with EB1 via a bona-fide SxIP motif. Our findings provide important new insight into the mode of interaction between Theileria and the host cell cytoskeleton.
Resumo:
Chondrites are among the most primitive objects in the Solar System and constitute the main building blocks of telluric planets. Among the radiochronometers currently used for dating geological events, Sm–Nd and Lu–Hf are both composed of refractory, lithophile element. They are thought to behave similarly as the parent elements (Sm and Lu) are generally less incompatible than the daughter elements (Nd and Hf) during geological processes. As such, their respective average isotopic compositions for the solar system should be well defined by the average of chondrites, called Chondritic Uniform Reservoir (CHUR). However, while the Sm–Nd isotopic system shows an actual spread of less than 4% in the average chondritic record, the Lu–Hf system shows a larger variation range of 28% [Bouvier A., Vervoort J. D. and Patchett P. J. (2008) The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett.273, 48–57]. To better understand the contrast between Sm–Nd and Lu–Hf systems, the REE and Hf distribution among mineral phases during metamorphism of Karoonda (CK) and Vigarano-type (CV) carbonaceous chondrites has been examined. Mineral modes were determined from elemental mapping on a set of five CK chondrites (from types 3–6) and one CV3 chondrite. Trace-element patterns are obtained for the first time in all the chondrite-forming minerals of a given class (CK chondrites) as well as one CV3 sample. This study reveals that REE are distributed among both phosphates and silicates. Only 30–50% of Sm and Nd are stored in phosphates (at least in chondrites types 3–5); as such, they are not mobilized during early stages of metamorphism. The remaining fraction of Sm and Nd is distributed among the same mineral phases; these elements are therefore not decoupled during metamorphism. Of the whole-rock total of Lu, the fraction held in phosphate decreases significantly as the degree of metamorphism increases (30% for types 3 and 4, less than 5% in type 6). In contrast to Lu, Hf is mainly hosted by silicates with little contribution from phosphates throughout the CK metamorphic sequence. A significant part of Sm and Nd are stored in phosphates in types 3–5, and these elements behave similarly during CK chondrite metamorphism. That explains the robustness of the Sm/Nd ratios in chondrites through metamorphism, and the slight discrepancies observed in the present-day isotopic Nd values in chondrites. On the contrary, Lu and Hf are borne by several different minerals and consequently they are redistributed during metamorphism–induced recrystallization. The Lu/Hf ratios are therefore significantly disturbed during chondrites metamorphism, leading to the high discrepancies observed in present-day Hf isotopic values in chondrites.
Resumo:
Mitochondria cannot form de novo but require mechanisms allowing their inheritance to daughter cells. In contrast to most other eukaryotes Trypanosoma brucei has a single mitochondrion whose single-unit genome is physically connected to the flagellum. Here we identify a β-barrel mitochondrial outer membrane protein, termed tripartite attachment complex 40 (TAC40), that localizes to this connection. TAC40 is essential for mitochondrial DNA inheritance and belongs to the mitochondrial porin protein family. However, it is not specifically related to any of the three subclasses of mitochondrial porins represented by the metabolite transporter voltage-dependent anion channel (VDAC), the protein translocator of the outer membrane 40 (TOM40), or the fungi-specific MDM10, a component of the endoplasmic reticulum–mitochondria encounter structure (ERMES). MDM10 and TAC40 mediate cellular architecture and participate in transmembrane complexes that are essential for mitochondrial DNA inheritance. In yeast MDM10, in the context of the ERMES, is postulated to connect the mitochondrial genomes to actin filaments, whereas in trypanosomes TAC40 mediates the linkage of the mitochondrial DNA to the basal body of the flagellum. However, TAC40 does not colocalize with trypanosomal orthologs of ERMES components and, unlike MDM10, it regulates neither mitochondrial morphology nor the assembly of the protein translocase. TAC40 therefore defines a novel subclass of mitochondrial porins that is distinct from VDAC, TOM40, and MDM10. However, whereas the architecture of the TAC40-containing complex in trypanosomes and the MDM10-containing ERMES in yeast is very different, both are organized around a β-barrel protein of the mitochondrial porin family that mediates a DNA–cytoskeleton linkage that is essential for mitochondrial DNA inheritance.
Resumo:
It is not sufficiently understood why some lineages of cichlid fishes have proliferated in the Great Lakes of East Africa much more than anywhere else in the world, and much faster than other cichlid lineages or any other group of freshwater fish. Recent field and experimental work on Lake Victoria haplochromines suggests that mate choice-mediated disruptive sexual selection on coloration, that can cause speciation even in the absence of geographical isolation, may explain it. We summarize the evidence and propose a hypothesis for the genetics of coloration that may help understand the phenomenon. By detl ning colour patterns by hue and arrangement of hues on the body, we could assign almost all observed phenotypes of Lake Victoria cichlids to one of three female («plain», «orange blotched», «black and white») and three male («blue», «red-ventrum», «reddorsum») colour patterns. These patterns diagnose species but frequently eo-occur also as morphs within the same population, where they are associated with variation in mate preferences, and appear to be transient stages in speciation. Particularly the male patterns occur in almost every genus of the species flock. We propose that the patterns and their association into polymorphisms express an ancestral trait that is retained across speciation. Our model for male colour pattern assumes two structural loci. When both are switched off, the body is blue. When switched on by a cascade of polymorphic regulatory genes, one expresses a yellow to red ventrum, the other one a yellow to red dorsum. The expression of colour variation initiates speciation. The blue daughter species will inherit the variation at the regulatory genes that can, without new mutational events, purely by recombination, again expose the colour polymorphism, starting the process anew. Very similar colour patterns also dominate among the Mbuna of Lake Malawi. In contrast, similar colour polymorphisms do not exist in the lineages that have not proliferated in the Great Lakes. The colour pattern polymorphism may be an ancient trait in the lineage (or lineages) that gave rise to the two large haplochromine radiations. We propose two tests of our hypothesis.
Resumo:
Chemical investigations of superheavy elements in the gas-phase, i.e. elements with Z≥104Z≥104, allow assessing the influence of relativistic effects on their chemical properties. Furthermore, for some superheavy elements and their compounds quite unique gas-phase chemical properties were predicted. The experimental verification of these properties yields supporting evidence for a firm assignment of the atomic number. Prominent examples are the high volatility observed for HsO4 or the very weak interaction of Cn with gold surfaces. The unique properties of HsO4 were exploited to discover the doubly-magic even–even nucleus 270Hs and the new isotope 271Hs. The combination of kinematic pre-separation and gas-phase chemistry allowed gaining access to a new class of relatively fragile compounds, the carbonyl complexes of elements Sg through Mt. A not yet resolved issue concerns the interaction of Fl with gold surfaces. While competing experiments agree on the fact that Fl is a volatile element, there are discrepancies concerning its adsorption on gold surfaces with respect to its daughter Cn. The elucidation of these and other questions amounts to the fascination that gas-phase chemical investigations exert on current research at the extreme limits of chemistry today.
Resumo:
Asteroid 2008 TC3 (approximately 4m diameter) was tracked and studied in space for approximately 19h before it impacted Earth's atmosphere, shattering at 44-36km altitude. The recovered samples (>680 individual rocks) comprise the meteorite Almahata Sitta (AhS). Approximately 50-70% of these are ureilites (ultramafic achondrites). The rest are chondrites, mainly enstatite, ordinary, and Rumuruti types. The goal of this work is to understand how fragments of so many different types of parent bodies became mixed in the same asteroid. Almahata Sitta has been classified as a polymict ureilite with an anomalously high component of foreign clasts. However, we calculate that the mass of fallen material was 0.1% of the pre-atmospheric mass of the asteroid. Based on published data for the reflectance spectrum of the asteroid and laboratory spectra of the samples, we infer that the lost material was mostly ureilitic. Therefore, 2008 TC3 probably contained only a few percent nonureilitic materials, similar to other polymict ureilites except less well consolidated. From available data for the AhS meteorite fragments, we conclude that 2008 TC3 samples essentially the same range of types of ureilitic and nonureilitic materials as other polymict ureilites. We therefore suggest that the immediate parent of 2008 TC3 was the immediate parent of all ureilitic material sampled on Earth. We trace critical stages in the evolution of that material through solar system history. Based on various types of new modeling and re-evaluation of published data, we propose the following scenario. (1) The ureilite parent body (UPB) accreted 0.5-0.6Ma after formation of calcium-aluminum-rich inclusions (CAI), beyond the ice line (outer asteroid belt). Differentiation began approximately 1Ma after CAI. (2) The UPB was catastrophically disrupted by a major impact approximately 5Ma after CAI, with selective subsets of the fragments reassembling into daughter bodies. (3) Either the UPB (before breakup), or one of its daughters (after breakup), migrated to the inner belt due to scattering by massive embryos. (4) One daughter (after forming in or migrating to the inner belt) became the parent of 2008 TC3. It developed a regolith, mostly 3.8Ga ago. Clasts of enstatite, ordinary, and Rumuruti-type chondrites were implanted by low-velocity collisions. (5) Recently, the daughter was disrupted. Fragments were injected or drifted into Earth-crossing orbits. 2008 TC3 comes from outer layers of regolith, other polymict ureilites from deeper regolith, and main group ureilites from the interior of this body. In contrast to other models that have been proposed, this model invokes a stochastic history to explain the unique diversity of foreign materials in 2008 TC3 and other polymict ureilites.
Resumo:
The rodent malaria parasite Plasmodium berghei develops in hepatocytes within 48-52h from a single sporozoite into up to 20,000 daughter parasites, so-called merozoites. The cellular and molecular details of this extensive proliferation are still largely unknown. Here we have used a transgenic, RFP-expressing P. berghei parasite line and molecular imaging techniques including intravital microscopy to decipher various aspects of parasite development within the hepatocyte. In late schizont stages, MSP1 is expressed and incorporated into the parasite plasma membrane that finally forms the membrane of developing merozoites by continuous invagination steps. We provide first evidence for activation of a verapamil-sensitive Ca(2+) channel in the plasma membrane of liver stage parasites before invagination occurs. During merozoite formation, the permeability of the parasitophorous vacuole membrane changes considerably before it finally becomes completely disrupted, releasing merozoites into the host cell cytoplasm.