3 resultados para Daisy-chain resistance
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In contrast to the current belief that angiotensin II (Ang II) interacts with the sympathetic nervous system only as a circulating hormone, we document here the existence of endogenous Ang II in the neurons of rat and human sympathetic coeliac ganglia and their angiotensinergic innervation with mesenteric resistance blood vessels. Angiotensinogen - and angiotensin converting enzyme-mRNA were detected by using quantitative real time polymerase chain reaction in total RNA extracts of rat coeliac ganglia, while renin mRNA was untraceable. Cathepsin D, a protease responsible for cleavage beneath other substrates also angiotensinogen to angiotensin I, was successfully detected in rat coeliac ganglia indicating the possibility of existence of alternative pathways. Angiotensinogen mRNA was also detected by in situ hybridization in the cytoplasm of neurons of rat coeliac ganglia. Immunoreactivity for Ang II was demonstrated in rat and human coeliac ganglia as well as with mesenteric resistance blood vessels. By using confocal laser scanning microscopy we were able to demonstrate the presence of angiotensinergic synapses en passant along side of vascular smooth muscle cells. Our findings indicate that Ang II is synthesized inside the neurons of sympathetic coeliac ganglia and may act as an endogenous neurotransmitter locally with the mesenteric resistance blood vessels.
Resumo:
Meat and meat products can be contaminated with different species of bacteria resistant to various antimicrobials. The human health risk of a type of meat or meat product carry by emerging antimicrobial resistance depends on (i) the prevalence of contamination with resistant bacteria, (ii) the human health consequences of an infection with a specific bacterium resistant to a specific antimicrobial and (iii) the consumption volume of a specific product. The objective of this study was to compare the risk for consumers arising from their exposure to antibiotic resistant bacteria from meat of four different types (chicken, pork, beef and veal), distributed in four different product categories (fresh meat, frozen meat, dried raw meat products and heat-treated meat products). A semi-quantitative risk assessment model, evaluating each food chain step, was built in order to get an estimated score for the prevalence of Campylobacter spp., Enterococcus spp. and Escherichia coli in each product category. To assess human health impact, nine combinations of bacterial species and antimicrobial agents were considered based on a published risk profile. The combination of the prevalence at retail, the human health impact and the amount of meat or product consumed, provided the relative proportion of total risk attributed to each category of product, resulting in a high, medium or low human health risk. According to the results of the model, chicken (mostly fresh and frozen meat) contributed 6.7% of the overall risk in the highest category and pork (mostly fresh meat and dried raw meat products) contributed 4.0%. The contribution of beef and veal was of 0.4% and 0.1% respectively. The results were tested and discussed for single parameter changes of the model. This risk assessment was a useful tool for targeting antimicrobial resistance monitoring to those meat product categories where the expected risk for public health was greater.
Resumo:
The spread of antibiotic-resistant bacteria through food has become a major public health concern because some important human pathogens may be transferred via the food chain. Acinetobacter baumannii is one of the most life-threatening gram-negative pathogens; multidrug-resistant (MDR) clones of A. baumannii are spreading worldwide, causing outbreaks in hospitals. However, the role of raw meat as a reservoir of A. baumannii remains unexplored. In this study, we describe for the first time the antibiotic susceptibility and fingerprint (repetitive extragenic palindromic PCR [rep-PCR] profile and sequence types [STs]) of A. baumannii strains found in raw meat retailed in Switzerland. Our results indicate that A. baumannii was present in 62 (25.0%) of 248 (CI 95%: 19.7 to 30.9%) meat samples analyzed between November 2012 and May 2013, with those derived from poultry being the most contaminated (48.0% [CI 95%: 37.8 to 58.3%]). Thirty-nine strains were further tested for antibiotic susceptibility and clonality. Strains were frequently not susceptible (intermediate and/or resistant) to third- and fourth-generation cephalosporins for human use (i.e., ceftriaxone [65%], cefotaxime [32%], ceftazidime [5%], and cefepime [2.5%]). Resistance to piperacillin-tazobactam, ciprofloxacin, colistin, and tetracycline was sporadically observed (2.5, 2.5, 5, and 5%, respectively), whereas resistance to carbapenems was not found. The strains were genetically very diverse from each other and belonged to 29 different STs, forming 12 singletons and 6 clonal complexes (CCs), of which 3 were new (CC277, CC360, and CC347). RepPCR analysis further distinguished some strains of the same ST. Moreover, some A. baumannii strains from meat belonged to the clonal complexes CC32 and CC79, similar to the MDR isolates responsible for human infections. In conclusion, our findings suggest that raw meat represents a reservoir of MDR A. baumannii and may serve as a vector for the spread of these pathogens into both community and hospital settings.