5 resultados para DYSTROPHIN EXPRESSION
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Antisense oligonucleotides (AONs) hold promise for therapeutic correction of many genetic diseases via exon skipping, and the first AON-based drugs have entered clinical trials for neuromuscular disorders1, 2. However, despite advances in AON chemistry and design, systemic use of AONs is limited because of poor tissue uptake, and recent clinical reports confirm that sufficient therapeutic efficacy has not yet been achieved. Here we present a new class of AONs made of tricyclo-DNA (tcDNA), which displays unique pharmacological properties and unprecedented uptake by many tissues after systemic administration. We demonstrate these properties in two mouse models of Duchenne muscular dystrophy (DMD), a neurogenetic disease typically caused by frame-shifting deletions or nonsense mutations in the gene encoding dystrophin3, 4 and characterized by progressive muscle weakness, cardiomyopathy, respiratory failure5 and neurocognitive impairment6. Although current naked AONs do not enter the heart or cross the blood-brain barrier to any substantial extent, we show that systemic delivery of tcDNA-AONs promotes a high degree of rescue of dystrophin expression in skeletal muscles, the heart and, to a lesser extent, the brain. Our results demonstrate for the first time a physiological improvement of cardio-respiratory functions and a correction of behavioral features in DMD model mice. This makes tcDNA-AON chemistry particularly attractive as a potential future therapy for patients with DMD and other neuromuscular disorders or with other diseases that are eligible for exon-skipping approaches requiring whole-body treatment.
Resumo:
In skeletal muscle of patients with clinically diagnosed statin-associated myopathy, discrete signs of structural damage predominantly localize to the T-tubular region and are suggestive of a calcium leak. The impact of statins on skeletal muscle of non-myopathic patients is not known. We analyzed the expression of selected genes implicated in the molecular regulation of calcium and membrane repair, in lipid homeostasis, myocyte remodeling and mitochondrial function. Microscopic and gene expression analyses were performed using validated TaqMan custom arrays on skeletal muscle biopsies of 72 age-matched subjects who were receiving statin therapy (n = 38), who had discontinued therapy due to statin-associated myopathy (n = 14), and who had never undergone statin treatment (n = 20). In skeletal muscle, obtained from statin-treated, non-myopathic patients, statins caused extensive changes in the expression of genes of the calcium regulatory and the membrane repair machinery, whereas the expression of genes responsible for mitochondrial function or myocyte remodeling was unaffected. Discontinuation of treatment due to myopathic symptoms led to a normalization of gene expression levels, the genes encoding the ryanodine receptor 3, calpain 3, and dystrophin being the most notable exceptions. Hence, even in clinically asymptomatic (non-myopathic) patients, statin therapy leads to an upregulation in the expression of genes that are concerned with skeletal muscle regulation and membrane repair.
Resumo:
Duchenne muscular dystrophy (DMD) is a hereditary X-linked recessive disorder affecting the synthesis of dystrophin, a protein essential for structural stability in muscle. Dystrophin also occurs in the central nervous system, particularly in the neocortex, hippocampus and cerebellum. Quantitative metabolic analysis by localized (1) H MRS was performed in the cerebellum (12 patients and 15 controls) and a temporo-parietal location (eight patients and 15 controls) in patients with DMD and healthy controls to investigate possible metabolic differences. In addition, the site of individual mutations on the dystrophin gene was analyzed and neuropsychological cognitive functions were examined. Cognitive deficits in the patient group were found in line with earlier investigations, mainly concerning verbal short-term memory, visuo-spatial long-term memory and verbal fluency, but also the full-scale IQ. Causal mutations were identified in all patients with DMD. Quantitative MRS showed consistent choline deficits, in both cerebellar white matter and temporo-parietal cortex, as well as small, but significant, metabolic abnormalities for glutamate and total N-acetyl compounds in the temporo-parietal region. Compartment water analysis did not reveal any abnormalities. In healthy subjects, choline levels were age related in the cerebellum. The choline deficit contrasts with earlier findings in DMD, where a surplus of choline was postulated for the cerebellum. In patients, total N-acetyl compounds in the temporo-parietal region were related to verbal IQ and verbal short-term memory. However, choline, the putative main metabolic abnormality, was not found to be associated with cognitive deficits. Furthermore, in contrast with the cognitive performance, the metabolic brain composition did not depend significantly on whether or not gene mutations concerned the expression of the dystrophin isoform Dp140, leading to the conclusion that the effect of the missing Dp140 isoform on cognitive performance is not mediated through the observed metabolite composition, or is caused by local effects beyond the resolution accessible to MRS investigations.
Resumo:
The cardiac voltage-gated sodium channel, Nav1.5, plays a central role in cardiac excitability and impulse propagation and associates with the dystrophin multiprotein complex at the lateral membrane of cardiomyocytes. It was previously shown that Nav1.5 protein content and the sodium current (l Na) were both decreased in cardiomyocytes of dystrophin-deficient mdx (5cv) mice. In this study, wild-type and mdx (5cv) mice were treated for 7 days with the proteasome inhibitor MG132 (10 μg/Kg/24 h) using implanted osmotic mini pumps. MG132 rescued both the total amount of Nav1.5 protein and l Na but, unlike in previous studies, de novo expression of dystrophin was not observed in skeletal or cardiac muscle. This study suggests that the reduced expression of Nav1.5 in dystrophin-deficient cells is dependent on proteasomal degradation.
Resumo:
Most cases of Duchenne muscular dystrophy are caused by dystrophin gene mutations that disrupt the mRNA reading frame. Artificial exclusion (skipping) of a single exon would often restore the reading frame, giving rise to a shorter, but still functional dystrophin protein. Here, we analyzed the ability of antisense U7 small nuclear (sn)RNA derivatives to alter dystrophin pre-mRNA splicing. As a proof of principle, we first targeted the splice sites flanking exon 23 of dystrophin pre-mRNA in the wild-type muscle cell line C2C12 and showed precise exon 23 skipping. The same strategy was then successfully adapted to dystrophic immortalized mdx muscle cells where exon-23-skipped dystrophin mRNA rescued dystrophin protein synthesis. Moreover, we observed a stimulation of antisense U7 snRNA expression by the murine muscle creatine kinase enhancer. These results demonstrate that alteration of dystrophin pre-mRNA splicing could correct dystrophin gene mutations by expression of specific U7 snRNA constructs.