20 resultados para DTN,Opportunistic Routing,Contact Graph Routing,Opportunistic Contact Graph Routing,ION
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Opportunistic routing (OR) employs a list of candi- dates to improve reliability of wireless transmission. However, list-based OR features restrict the freedom of opportunism, since only the listed nodes can compete for packet forwarding. Additionally, the list is statically generated based on a single metric prior to data transmission, which is not appropriate for mobile ad-hoc networks. This paper provides a thorough perfor- mance evaluation of a new protocol - Context-aware Opportunistic Routing (COR). The contributions of COR are threefold. First, it uses various types of context information simultaneously such as link quality, geographic progress, and residual energy of nodes to make routing decisions. Second, it allows all qualified nodes to participate in packet forwarding. Third, it exploits the relative mobility of nodes to further improve performance. Simulation results show that COR can provide efficient routing in mobile environments, and it outperforms existing solutions that solely rely on a single metric by nearly 20 - 40 %.
Resumo:
Mobile multimedia ad hoc services run on dynamic topologies due to node mobility or failures and wireless channel impairments. A robust routing service must adapt to topology changes with the aim of recovering or maintaining the video quality level and reducing the impact of the user's experience. In those scenarios, beacon-less Opportunistic Routing (OR) increases the robustness by supporting routing decisions in a completely distributed manner based on protocol-specific characteristics. However, the existing beacon-less OR approaches do not efficiently combine multiple metrics for forwarding selection, which cause higher packet loss rate, and consequently reduce the video quality level. In this paper, we assess the robustness and reliability of our recently developed OR protocol under node failures, called cross-layer Link quality and Geographical-aware OR protocol (LinGO). Simulation results show that LinGO achieves multimedia dissemination with QoE support and robustness in scenarios with dynamic topologies.
Resumo:
Opportunistic routing (OR) takes advantage of the broadcast nature and spatial diversity of wireless transmission to improve the performance of wireless ad-hoc networks. Instead of using a predetermined path to send packets, OR postpones the choice of the next-hop to the receiver side, and lets the multiple receivers of a packet to coordinate and decide which one will be the forwarder. Existing OR protocols choose the next-hop forwarder based on a predefined candidate list, which is calculated using single network metrics. In this paper, we propose TLG - Topology and Link quality-aware Geographical opportunistic routing protocol. TLG uses multiple network metrics such as network topology, link quality, and geographic location to implement the coordination mechanism of OR. We compare TLG with well-known existing solutions and simulation results show that TLG outperforms others in terms of both QoS and QoE metrics.
Resumo:
A reliable and robust routing service for Flying Ad-Hoc Networks (FANETs) must be able to adapt to topology changes. User experience on watching live video sequences must also be satisfactory even in scenarios with buffer overflow and high packet loss ratio. In this paper, we introduce a Cross-layer Link quality and Geographical-aware beaconless opportunistic routing protocol (XLinGO). It enhances the transmission of simultaneous multiple video flows over FANETs by creating and keeping reliable persistent multi-hop routes. XLinGO considers a set of cross-layer and human-related information for routing decisions, as performance metrics and Quality of Experience (QoE). Performance evaluation shows that XLinGO achieves multimedia dissemination with QoE support and robustness in a multi-hop, multi-flow, and mobile network environments.
Resumo:
Opportunistic routing (OR) employs a list of candidates to improve wireless transmission reliability. However, conventional list-based OR restricts the freedom of opportunism, since only the listed nodes are allowed to compete for packet forwarding. Additionally, the list is generated statically based on a single network metric prior to data transmission, which is not appropriate for mobile ad-hoc networks (MANETs). In this paper, we propose a novel OR protocol - Context-aware Adaptive Opportunistic Routing (CAOR) for MANETs. CAOR abandons the idea of candidate list and it allows all qualified nodes to participate in packet transmission. CAOR forwards packets by simultaneously exploiting multiple cross-layer context information, such as link quality, geographic progress, energy, and mobility.With the help of the Analytic Hierarchy Process theory, CAOR adjusts the weights of context information based on their instantaneous values to adapt the protocol behavior at run-time. Moreover, CAOR uses an active suppression mechanism to reduce packet duplication. Simulation results show that CAOR can provide efficient routing in highly mobile environments. The adaptivity feature of CAOR is also validated.
Resumo:
Information Centric Networking (ICN) as an emerging paradigm for the Future Internet has initially been rather focusing on bandwidth savings in wired networks, but there might also be some significant potential to support communication in mobile wireless networks as well as opportunistic network scenarios, where end systems have spontaneous but time-limited contact to exchange data. This chapter addresses the reasoning why ICN has an important role in mobile and opportunistic networks by identifying several challenges in mobile and opportunistic Information-Centric Networks and discussing appropriate solutions for them. In particular, it discusses the issues of receiver and source mobility. Source mobility needs special attention. Solutions based on routing protocol extensions, indirection, and separation of name resolution and data transfer are discussed. Moreover, the chapter presents solutions for problems in opportunistic Information-Centric Networks. Among those are mechanisms for efficient content discovery in neighbour nodes, resume mechanisms to recover from intermittent connectivity disruptions, a novel agent delegation mechanisms to offload content discovery and delivery to mobile agent nodes, and the exploitation of overhearing to populate routing tables of mobile nodes. Some preliminary performance evaluation results of these developed mechanisms are provided.
Resumo:
A reliable and robust routing service for Flying Ad-Hoc Networks (FANETs) must be able to adapt to topology changes, and also to recover the quality level of the delivered multiple video flows under dynamic network topologies. The user experience on watching live videos must also be satisfactory even in scenarios with network congestion, buffer overflow, and packet loss ratio, as experienced in many FANET multimedia applications. In this paper, we perform a comparative simulation study to assess the robustness, reliability, and quality level of videos transmitted via well-known beaconless opportunistic routing protocols. Simulation results shows that our developed protocol XLinGO achieves multimedia dissemination with Quality of Experience (QoE) support and robustness in a multi-hop, multi-flow, and mobile networks, as required in many multimedia FANET scenarios.
Resumo:
Energy is of primary concern in wireless sensor networks (WSNs). Low power transmission makes the wireless links unreliable, which leads to frequent topology changes. Resulting packet retransmissions aggravate the energy consumption. Beaconless routing approaches, such as opportunistic routing (OR) choose packet forwarders after data transmissions, and are promising to support dynamic features of WSNs. This paper proposes SCAD - Sensor Context-aware Adaptive Duty-cycled beaconless OR for WSNs. SCAD is a cross-layer routing solution and it brings the concept of beaconless OR into WSNs. SCAD selects packet forwarders based on multiple types of network contexts. To achieve a balance between performance and energy efficiency, SCAD adapts duty-cycles of sensors based on real-time traffic loads and energy drain rates. We implemented SCAD in TinyOS running on top of Tmote Sky sensor motes. Real-world evaluations show that SCAD outperforms other protocols in terms of both throughput and network lifetime.
Resumo:
Mobile ad-hoc networks (MANETs) and wireless sensor networks (WSNs) have been attracting increasing attention for decades due to their broad civilian and military applications. Basically, a MANET or WSN is a network of nodes connected by wireless communication links. Due to the limited transmission range of the radio, many pairs of nodes in MANETs or WSNs may not be able to communicate directly, hence they need other intermediate nodes to forward packets for them. Routing in such types of networks is an important issue and it poses great challenges due to the dynamic nature of MANETs or WSNs. On the one hand, the open-air nature of wireless environments brings many difficulties when an efficient routing solution is required. The wireless channel is unreliable due to fading and interferences, which makes it impossible to maintain a quality path from a source node to a destination node. Additionally, node mobility aggravates network dynamics, which causes frequent topology changes and brings significant overheads for maintaining and recalculating paths. Furthermore, mobile devices and sensors are usually constrained by battery capacity, computing and communication resources, which impose limitations on the functionalities of routing protocols. On the other hand, the wireless medium possesses inherent unique characteristics, which can be exploited to enhance transmission reliability and routing performance. Opportunistic routing (OR) is one promising technique that takes advantage of the spatial diversity and broadcast nature of the wireless medium to improve packet forwarding reliability in multihop wireless communication. OR combats the unreliable wireless links by involving multiple neighboring nodes (forwarding candidates) to choose packet forwarders. In opportunistic routing, a source node does not require an end-to-end path to transmit packets. The packet forwarding decision is made hop-by-hop in a fully distributed fashion. Motivated by the deficiencies of existing opportunistic routing protocols in dynamic environments such as mobile ad-hoc networks or wireless sensor networks, this thesis proposes a novel context-aware adaptive opportunistic routing scheme. Our proposal selects packet forwarders by simultaneously exploiting multiple types of cross-layer context information of nodes and environments. Our approach significantly outperforms other routing protocols that rely solely on a single metric. The adaptivity feature of our proposal enables network nodes to adjust their behaviors at run-time according to network conditions. To accommodate the strict energy constraints in WSNs, this thesis integrates adaptive duty-cycling mechanism to opportunistic routing for wireless sensor nodes. Our approach dynamically adjusts the sleeping intervals of sensor nodes according to the monitored traffic load and the estimated energy consumption rate. Through the integration of duty cycling of sensor nodes and opportunistic routing, our protocol is able to provide a satisfactory balance between good routing performance and energy efficiency for WSNs.
Resumo:
Low quality of wireless links leads to perpetual transmission failures in lossy wireless environments. To mitigate this problem, opportunistic routing (OR) has been proposed to improve the throughput of wireless multihop ad-hoc networks by taking advantage of the broadcast nature of wireless channels. However, OR can not be directly applied to wireless sensor networks (WSNs) due to some intrinsic design features of WSNs. In this paper, we present a new OR solution for WSNs with suitable adaptations to their characteristics. Our protocol, called SCAD-Sensor Context-aware Adaptive Duty-cycled beaconless opportunistic routing protocol is a cross-layer routing approach and it selects packet forwarders based on multiple sensor context information. To reach a balance between performance and energy-efficiency, SCAD adapts the duty-cycles of sensors according to real-time traffic loads and energy drain rates. We compare SCAD against other protocols through extensive simulations. Evaluation results show that SCAD outperforms other protocols in highly dynamic scenarios.
Resumo:
User experience on watching live videos must be satisfactory even under the inuence of different network conditions and topology changes, such as happening in Flying Ad-Hoc Networks (FANETs). Routing services for video dissemination over FANETs must be able to adapt routing decisions at runtime to meet Quality of Experience (QoE) requirements. In this paper, we introduce an adaptive beaconless opportunistic routing protocol for video dissemination over FANETs with QoE support, by taking into account multiple types of context information, such as link quality, residual energy, buffer state, as well as geographic information and node mobility in a 3D space. The proposed protocol takes into account Bayesian networks to define weight vectors and Analytic Hierarchy Process (AHP) to adjust the degree of importance for the context information based on instantaneous values. It also includes a position prediction to monitor the distance between two nodes in order to detect possible route failure.
Resumo:
For smart applications, nodes in wireless multimedia sensor networks (MWSNs) have to take decisions based on sensed scalar physical measurements. A routing protocol must provide the multimedia delivery with quality level support and be energy-efficient for large-scale networks. With this goal in mind, this paper proposes a smart Multi-hop hierarchical routing protocol for Efficient VIdeo communication (MEVI). MEVI combines an opportunistic scheme to create clusters, a cross-layer solution to select routes based on network conditions, and a smart solution to trigger multimedia transmission according to sensed data. Simulations were conducted to show the benefits of MEVI compared with the well-known Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol. This paper includes an analysis of the signaling overhead, energy-efficiency, and video quality.