3 resultados para DRP
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Drug-related emergency department visits by elderly patients presenting with non-specific complaints
Resumo:
BACKGROUND Since drug-related emergency department (ED) visits are common among older adults, the objectives of our study were to identify the frequency of drug-related problems (DRPs) among patients presenting to the ED with non-specific complaints (NSC), such as generalized weakness and to evaluate responsible drug classes. METHODS Delayed type cross-sectional diagnostic study with a prospective 30 day follow-up in the ED of the University Hospital Basel, Switzerland. From May 2007 until April 2009, all non-trauma patients presenting to the ED with an Emergency Severity Index (ESI) of 2 or 3 were screened and included, if they presented with non-specific complaints. After having obtained complete 30-day follow-up, two outcome assessors reviewed all available information, judged whether the initial presentation was a DRP and compared their judgment with the initial ED diagnosis. Acute morbidity ("serious condition") was allocated to individual cases according to predefined criteria. RESULTS The study population consisted of 633 patients with NSC. Median age was 81 years (IQR 72/87), and the mean Charlson comorbidity index was 2.5 (IQR 1/4). DRPs were identified in 77 of the 633 cases (12.2%). At the initial assessment, only 40% of the DRPs were correctly identified. 64 of the 77 identified DRPs (83%) fulfilled the criteria "serious condition". Polypharmacy and certain drug classes (thiazides, antidepressants, benzodiazepines, anticonvulsants) were associated with DRPs. CONCLUSION Elderly patients with non-specific complaints need to be screened systematically for drug-related problems. TRIAL REGISTRATION ClinicalTrials.gov: NCT00920491.
Resumo:
Phosphorus (P) is an essential macronutrient for all living organisms. Phosphorus is often present in nature as the soluble phosphate ion PO43– and has biological, terrestrial, and marine emission sources. Thus PO43– detected in ice cores has the potential to be an important tracer for biological activity in the past. In this study a continuous and highly sensitive absorption method for detection of dissolved reactive phosphorus (DRP) in ice cores has been developed using a molybdate reagent and a 2-m liquid waveguide capillary cell (LWCC). DRP is the soluble form of the nutrient phosphorus, which reacts with molybdate. The method was optimized to meet the low concentrations of DRP in Greenland ice, with a depth resolution of approximately 2 cm and an analytical uncertainty of 1.1 nM (0.1 ppb) PO43–. The method has been applied to segments of a shallow firn core from Northeast Greenland, indicating a mean concentration level of 2.74 nM (0.26 ppb) PO43– for the period 1930–2005 with a standard deviation of 1.37 nM (0.13 ppb) PO43– and values reaching as high as 10.52 nM (1 ppb) PO43–. Similar levels were detected for the period 1771–1823. Based on impurity abundances, dust and biogenic particles were found to be the most likely sources of DRP deposited in Northeast Greenland.
Resumo:
Abasic sites (AP-sites) are frequent DNA lesions, arising by spontaneous base hydrolysis or as intermediates of base excision repair (BER). The hemiacetal at the anomeric centre renders them chemically reactive, which presents a challenge to biochemical and structural investigation. Chemically more stable AP-site analogues have been used to avoid spontaneous decay, but these do not fully recapitulate the features of natural AP-sites. With its 3′-phosphate replaced by methylene, the abasic site analogue 3CAPS was suggested to circumvent some of these limitations. Here, we evaluated the properties of 3CAPS in biochemical BER assays with mammalian proteins. 3CAPS-containing DNA substrates were processed by APE1, albeit with comparably poor efficiency. APE1-cleaved 3CAPS can be extended by DNA polymerase β but repaired only by strand displacement as the 5′-deoxyribophosphate (dRP) cannot be removed. DNA glycosylases physically and functionally interact with 3CAPS substrates, underlining its structural integrity and biochemical reactivity. The AP lyase activity of bifunctional DNA glycosylases (NTH1, NEIL1, FPG), however, was fully inhibited. Notably, 3CAPS-containing DNA also effectively inhibited the activity of bifunctional glycosylases on authentic substrates. Hence, the chemically stable 3CAPS with its preserved hemiacetal functionality is a potent tool for BER research and a potential inhibitor of bifunctional DNA glycosylases.