18 resultados para DNA-REPLICATION

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Upon the incidence of DNA stress, the ataxia telangiectasia-mutated (ATM) and Rad3-related (ATR) signaling kinases activate a transient cell cycle arrest that allows cells to repair DNA before proceeding into mitosis. Although the ATM-ATR pathway is highly conserved over species, the mechanisms by which plant cells stop their cell cycle in response to the loss of genome integrity are unclear. We demonstrate that the cell cycle regulatory WEE1 kinase gene of Arabidopsis thaliana is transcriptionally activated upon the cessation of DNA replication or DNA damage in an ATR- or ATM-dependent manner, respectively. In accordance with a role for WEE1 in DNA stress signaling, WEE1-deficient plants showed no obvious cell division or endoreduplication phenotype when grown under nonstress conditions but were hypersensitive to agents that impair DNA replication. Induced WEE1 expression inhibited plant growth by arresting dividing cells in the G2-phase of the cell cycle. We conclude that the plant WEE1 gene is not rate-limiting for cycle progression under normal growth conditions but is a critical target of the ATR-ATM signaling cascades that inhibit the cell cycle upon activation of the DNA integrity checkpoints, coupling mitosis to DNA repair in cells that suffer DNA damage.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

REV3, the catalytic subunit of translesion polymerase zeta (polζ), is commonly associated with DNA damage bypass and repair. Despite sharing accessory subunits with replicative polymerase δ, very little is known about the role of polζ in DNA replication. We previously demonstrated that inhibition of REV3 expression induces persistent DNA damage and growth arrest in cancer cells. To reveal determinants of this sensitivity and obtain insights into the cellular function of REV3, we performed whole human genome RNAi library screens aimed at identification of synthetic lethal interactions with REV3 in A549 lung cancer cells. The top confirmed hit was RRM1, the large subunit of ribonucleotide reductase (RNR), a critical enzyme of de novo nucleotide synthesis. Treatment with the RNR-inhibitor hydroxyurea (HU) synergistically increased the fraction of REV3-deficient cells containing single stranded DNA (ssDNA) as indicated by an increase in replication protein A (RPA). However, this increase was not accompanied by accumulation of the DNA damage marker γH2AX suggesting a role of REV3 in counteracting HU-induced replication stress (RS). Consistent with a role of REV3 in DNA replication, increased RPA staining was confined to HU-treated S-phase cells. Additionally, we found genes related to RS to be significantly enriched among the top hits of the synthetic sickness/lethality (SSL) screen further corroborating the importance of REV3 for DNA replication under conditions of RS.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cell cycle checkpoints are signal transduction pathways that control the order and timing of cell cycle transitions, ensuring that critical events are completed before the occurrence of the next cell cycle transition. The Chk2 family of kinases is known to play a central role in mediating the cellular responses to DNA damage or DNA replication blocks in various organisms. Here we show through a phylogenetic study that the Drosophila melanogaster serine/threonine kinase Loki is the homolog of the yeast Mek1p, Rad53p, Dun1p, and Cds1 proteins as well as the human Chk2. Functional analyses allowed us to conclude that, in flies, chk2 is involved in monitoring double-strand breaks (DSBs) caused by irradiation during S and G2 phases. In this process it plays an essential role in inducing a cell cycle arrest in embryonic cells. Our results also show that, in contrast to C. elegans chk2, Drosophila chk2 is not essential for normal meiosis and recombination, and it also appears to be dispensable for the MMS-induced DNA damage checkpoint and the HU-induced DNA replication checkpoint during larval development. In addition, Drosophila chk2 does not act at the same cell cycle phases as its yeast homologs, but seems rather to be involved in a pathway similar to the mammalian one, which involves signaling through the ATM/Chk2 pathway in response to genotoxic insults. As mutations in human chk2 were linked to several cancers, these similarities point to the usefulness of the Drosophila model system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Many endoparasitic wasps inject, along with the egg, polydnavirus into their insect hosts, the virus being a prerequisite for successful parasitoid development. The genome of polydnaviruses consists of multiple circular dsDNA molecules of variable size. We show for a 12 kbp segment of the braconid Chelonus inanitus (CiV12) that it is integrated into the wasp genome. This is the first direct demonstration of integration for a bracovirus. PCR data indicated that the integrated form of CiV12 was present in all male and female stages investigated while the excised circular virus DNA only appeared in females after a specific stage in pupal-adult development. The data also indicated that after excision of virus DNA the genomic DNA was rejoined. This has not yet been reported for any polydnavirus. Sequence analyses in the junction regions revealed the presence of an imperfect consensus sequence of 15 nucleotides in CiV12, in each terminus of the integrated virus DNA and in the rejoined genomic DNA. Within these repeats two sequence types (ATA, TAC) were observed in the various virus clones and in the clones encompassing the rejoined genomic DNA; they corresponded to the sequence type in the right and left junction, respectively. To explain this, we propose a model of virus DNA replication in which the genomic DNA is folded to juxtapose the direct repeat of the left with that of the right junction; recombination at specific sites would then yield the two types of virus and rejoined genomic DNA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coats plus is a highly pleiotropic disorder particularly affecting the eye, brain, bone and gastrointestinal tract. Here, we show that Coats plus results from mutations in CTC1, encoding conserved telomere maintenance component 1, a member of the mammalian homolog of the yeast heterotrimeric CST telomeric capping complex. Consistent with the observation of shortened telomeres in an Arabidopsis CTC1 mutant and the phenotypic overlap of Coats plus with the telomeric maintenance disorders comprising dyskeratosis congenita, we observed shortened telomeres in three individuals with Coats plus and an increase in spontaneous γH2AX-positive cells in cell lines derived from two affected individuals. CTC1 is also a subunit of the α-accessory factor (AAF) complex, stimulating the activity of DNA polymerase-α primase, the only enzyme known to initiate DNA replication in eukaryotic cells. Thus, CTC1 may have a function in DNA metabolism that is necessary for but not specific to telomeric integrity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tumor suppressor genes, such as p53, RB, the INK4-ARF family and PML, suppress malignant transformation by regulating cell cycle progression, ensuring the fidelity of DNA replication and chromosomal segregation, or by inducing apoptosis in response to potentially deleterious events. In myeloid leukemia, hematopoietic differentiation resulting from highly coordinated, stage-wise expression of myeloid transcription and soluble signaling factors is disrupted leading to a block in terminal differentiation and uncontrolled proliferation. This virtually always involves functional inactivation or genetic disruption of one or several tumor suppressor genes in order to circumvent their checkpoint control and apoptosis-inducing functions. Hence, reactivation of tumor suppressor gene function has therapeutic potential and can possibly enhance conventional cytotoxic chemotherapy. In this review, we focus on the role of different tumor suppressor genes in myeloid differentiation and leukemogenesis, and discuss implications for therapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Metallocene dichlorides constitute a remarkable class of antineoplastic agents that are highly effective against several cancer cell lines. They were shown to accumulate in the DNA-rich region, which suggests DNA as the primary target. These compounds exhibit two cyclopentadienyl ligands and two labile halide ligands, resulting in a bent sandwich structure. The cis-dihalide motif is structurally related to the cis-chloro configuration of cisplatin and similar modes of action can thus be assumed. Cisplatin binds to two neighboring guanine nucleobases in DNA and consequently, distorts the double-helix, thereby inhibiting DNA replication and transcription. Platinum is classified as a soft Lewis acid and binds preferentially to the nitrogen atoms within the nucleobases. The metallocene dichlorides investigated in this study comprise the metal centers Ti, V, Nb, Mo, Hf, and W, which are classified as hard or intermediate Lewis acids, and thus, favor binding to the phosphate oxygen. Although several studies reported adduct formation of metallocene dichlorides with nucleic acids, substantial information about the adduct composition, the binding pattern, and the nucleobase selectivity has not been provided yet. ESI-MS analyses gave evidence for the formation of metallocene adducts (M = Ti, V, Mo, and W) with single-stranded DNA homologues at pH 7. No adducts were formed with Nb and Hf at neutral pH, albeit adducts with Nb were observed at a low pH. MS2 data revealed considerable differences of the adduct compositions. The product ion spectra of DNA adducts with hard Lewis acids (Ti, V) gave evidence for the loss of metallocene ligands and only moderate backbone fragmentation was observed. By contrast, adducts with intermediate Lewis acids (Mo, W) retained the hydroxy ligands. Preliminary results are in good agreement with the Pearson concept and DFT calculations. Since the metallodrugs were not lost upon CID, the nucleobase selectivity, stoichiometry, and binding patterns can be elucidated by means of tandem mass spectrometry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Depending on their developmental stage in the life cycle, malaria parasites develop within or outside host cells, and in extremely diverse contexts such as the vertebrate liver and blood circulation, or the insect midgut and hemocoel. Cellular and molecular mechanisms enabling the parasite to sense and respond to the intra- and the extra-cellular environments are therefore key elements for the proliferation and transmission of Plasmodium, and therefore are, from a public health perspective, strategic targets in the fight against this deadly disease. The MALSIG consortium, which was initiated in February 2009, was designed with the primary objective to integrate research ongoing in Europe and India on i) the properties of Plasmodium signalling molecules, and ii) developmental processes occurring at various points of the parasite life cycle. On one hand, functional studies of individual genes and their products in Plasmodium falciparum (and in the technically more manageable rodent model Plasmodium berghei) are providing information on parasite protein kinases and phosphatases, and of the molecules governing cyclic nucleotide metabolism and calcium signalling. On the other hand, cellular and molecular studies are elucidating key steps of parasite development such as merozoite invasion and egress in blood and liver parasite stages, control of DNA replication in asexual and sexual development, membrane dynamics and trafficking, production of gametocytes in the vertebrate host and further parasite development in the mosquito. This article, which synthetically reviews such signalling molecules and cellular processes, aims to provide a glimpse of the global frame in which the activities of the MALSIG consortium will develop over the next three years.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The lifespan of plants ranges from a few weeks in annuals to thousands of years in trees. It is hard to explain such extreme longevity considering that DNA replication errors inevitably cause mutations. Without purging through meiotic recombination, the accumulation of somatic mutations will eventually result in mutational meltdown, a phenomenon known as Muller’s ratchet. Nevertheless, the lifespan of trees is limited more often by incidental disease or structural damage than by genetic aging. The key determinants of tree architecture are the axillary meristems, which form in the axils of leaves and grow out to form branches. The number of branches is low in annual plants, but in perennial plants iterative branching can result in thousands of terminal branches. Here, we use stem cell ablation and quantitative cell-lineage analysis to show that axillary meristems are set aside early, analogous to the metazoan germline. While neighboring cells divide vigorously, axillary meristem precursors maintain a quiescent state, with only 7–9 cell divisions occurring between the apical and axillary meristem. During iterative branching, the number of branches increases exponentially, while the number of cell divisions increases linearly. Moreover, computational modeling shows that stem cell arrangement and positioning of axillary meristems distribute somatic mutations around the main shoot, preventing their fixation and maximizing genetic heterogeneity. These features slow down Muller’s ratchet and thereby extend lifespan.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the role that erythroviruses (parvovirus B19 and erythrovirus genotypes 2 and 3) play in the lives of immunosuppressed HIV-infected patients with chronic anemia. We screened the serum samples of 428 patients by specific ultrasensitive real-time polymerase chain reaction assay. Sixteen patients had circulating DNA, with no apparent clinical impact. Erythrovirus-associated anemia is an extremely rare event in HIV-infected patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complementary Watson-Crick base-pairs, A:T and G:C, have long been recognized as pivotal to both the stability of the DNA double helix and replication/transcription. Recently, the replacement of the Watson-Crick base-pairs with other molecular entities has received considerable attention. In this tutorial review we highlight different approaches used to replace natural base-pairs and equip them with novel function. We also discuss the advantages that non-natural base-pairs convey with respect to practical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hypermutations in hepatitis B virus (HBV) DNA by APOBEC3 cytidine deaminases have been detected in vitro and in vivo, and APOBEC3G (A3G) and APOBEC3F (A3F) have been shown to inhibit the replication of HBV in vitro, but the presumably low or even absent hepatic expression of these enzymes has raised the question as to their physiological impact on HBV replication. We show that normal human liver expresses the mRNAs of APOBEC3B (A3B), APOBEC3C (A3C), A3F, and A3G. In primary human hepatocytes, interferon alpha (IFN-alpha) stimulated the expression of these cytidine deaminases up to 14-fold, and the mRNAs of A3G, A3F, and A3B reached expression levels of 10%, 3%, and 3%, respectively, relative to GAPDH mRNA abundance. On transfection, the full-length protein A3B(L) inhibited HBV replication in vitro as efficiently as A3G or A3F, whereas the truncated splice variant A3B(S) and A3C had no effect. A3B(L) and A3B(S) were detected predominantly in the nucleus of uninfected cells; however, in HBV-expressing cells both proteins were found also in the cytoplasm and were associated with HBV viral particles, similarly to A3G and A3F. Moreover, A3G, A3F, and A3B(L), but not A3B(S), induced extensive G-to-A hypermutations in a fraction of the replicated HBV genomes. In conclusion, the editing enzymes A3B(L), A3F, and most markedly A3G, which are expressed in liver and up-regulated by IFN-alpha in hepatocytes, are candidates to contribute to the noncytolytic clearance of HBV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

APOBEC3 cytidine deaminases hypermutate hepatitis B virus (HBV) and inhibit its replication in vitro. Whether this inhibition is due to the generation of hypermutations or to an alternative mechanism is controversial. A series of APOBEC3B (A3B) point mutants was analysed in vitro for hypermutational activity on HBV DNA and for inhibitory effects on HBV replication. Point mutations inactivating the carboxy-terminal deaminase domain abolished the hypermutational activity and reduced the inhibitory activity on HBV replication to approximately 40 %. In contrast, the point mutation H66R, inactivating the amino-terminal deaminase domain, did not affect hypermutations, but reduced the inhibition activity to 63 %, whilst the mutant C97S had no effect in either assay. Thus, only the carboxy-terminal deaminase domain of A3B catalyses cytidine deaminations leading to HBV hypermutations, but induction of hypermutations is not sufficient for full inhibition of HBV replication, for which both domains of A3B must be intact.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bovine papillomavirus type 1 or 2 (BPV-1, BPV-2) are accepted causal factors in equine sarcoid pathogenesis. Whereas viral genomes are consistently found and expressed within lesions, intact virions have never been detected, thus permissiveness of sarcoids for BPV-1 replication remains unclear. To reassess this issue, an immunocapture PCR (IC/PCR) was established using L1-specific antibodies to capture L1-DNA complexes followed by amplification of the viral genome. Following validation of the assay, 13 sarcoid-bearing horses were evaluated by IC/PCR. Samples were derived from 21 tumours, 4 perilesional/intact skin biopsies, and 1 serum. Tissue extracts from sarcoid-free equines served as controls. IC/PCR scored positive in 14/24 (58.3%) specimens obtained from sarcoid-patients, but negative for controls. Quantitative IC/PCR demonstrated <125 immunoprecipitable viral genomes/50 microl extract for the majority of specimens. Moreover, full-length BPV-1 genomes were detected in a complex with L1 proteins. These complexes may correspond to virion precursors or intact virions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nuclear antisense properties of a series of tricyclo(tc)-DNA oligonucleotide 9-15mers, targeted against the 3' and 5' splice sites of exon 4 of cyclophilin A (CyPA) pre-mRNA, were evaluated in HeLa cells and compared with those of corresponding LNA-oligonucleotides. While the 9mers showed no significant antisense effect, the 11-15mers induced exon 4 skipping and exon 3+4 double skipping to about an equal extent upon lipofectamine mediated transfection in a sequence and dose dependent manner, as revealed by a RT-PCR assay. The antisense efficacy of the tc-oligonucleotides was found to be superior to that of the LNA-oligonucleotides in all cases by a factor of at least 4-5. A tc-oligonucleotide 15mer completely abolished CyPA mRNA production at 0.2‘M concentration. The antisense effect was confirmed by western blot analysis which revealed a reduction of CyPA protein to 13% of its normal level. Fluorescence microscopic investigations with a fluorescein labeled tc-15mer revealed a strong propensity for homogeneous nuclear localization of this backbone type after lipofectamine mediated transfection, while the corresponding lna 15mer showed a less clear cellular distribution pattern. Transfection without lipid carrier showed no significant internalization of both tc- and LNA-oligonucleotides. The obtained results confirm the power of tricyclo-DNA for nuclear antisense applications. Morover, CyPA may become an interesting therapeutic target due to its important role in the early steps of the viral replication of HIV-1.