42 resultados para DEPENDENT MECHANISMS
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Horses are particularly prone to allergic and autoimmune diseases, but little information about equine regulatory T cells (Treg) is currently available. The aim of this study therefore was to investigate the existence of CD4(+) Treg cells in horses, determine their suppressive function as well as their mechanism of action. Freshly isolated peripheral blood mononuclear cells (PBMC) from healthy horses were examined for CD4, CD25 and forkhead box P3 (FoxP3) expression. We show that equine FoxP3 is expressed constitutively by a population of CD4(+) CD25(+) T cells, mainly in the CD4(+) CD25(high) subpopulation. Proliferation of CD4(+) CD25(-) sorted cells stimulated with irradiated allogenic PBMC was significantly suppressed in co-culture with CD4(+) CD25(high) sorted cells in a dose-dependent manner. The mechanism of suppression by the CD4(+) CD25(high) cell population is mediated by close contact as well as interleukin (IL)-10 and transforming growth factor-beta1 (TGF-beta1) and probably other factors. In addition, we studied the in vitro induction of CD4(+) Treg and their characteristics compared to those of freshly isolated CD4(+) Treg cells. Upon stimulation with a combination of concanavalin A, TGF-beta1 and IL-2, CD4(+) CD25(+) T cells which express FoxP3 and have suppressive capability were induced from CD4(+) CD25(-) cells. The induced CD4(+) CD25(high) express higher levels of IL-10 and TGF-beta1 mRNA compared to the freshly isolated ones. Thus, in horses as in man, the circulating CD4(+) CD25(high) subpopulation contains natural Treg cells and functional Treg can be induced in vitro upon appropriate stimulation. Our study provides the first evidence of the regulatory function of CD4(+) CD25(+) cells in horses and offers insights into ex vivo manipulation of Treg cells.
Resumo:
Post-transplant bronchiolitis obliterans, also called bronchiolitis obliterans syndrome, affects up to 50-60% of patients who survive 5 yr after surgery according to its clinical definition, which is based on the degree of obstructive airway disease. Alloimmune-independent and -dependent mechanisms produce injuries and inflammation of epithelial cells and subepithelial structures, leading to aberrant tissue repair. The triggering of innate immunity by various infections or chemical injuries after, for example, gastroesophageal reflux, may lead to the release of danger signals that are able to activate dendritic cells, a crucial link with adaptive immunity. Inflammation can also increase the expression and display of major histocompatibility alloantigens and thus favor the initiation of rejection episodes. These phenomena may be limited in time and location or may be protracted. Reducing the risk of alloimmune-independent factors may be as important as treating acute episodes of lung rejection. Excessive immunosuppression may be deleterious by increasing the risk of infection, thereby triggering innate and adaptive immunity. New potential therapeutic targets are emerging from the research performed on leukotriene receptors, chemokine receptors, and growth factors. Neutralizing these molecules reduces the initial mononuclear and polynuclear infiltrates or the subsequent fibroproliferative process and the neovascular changes, feeding this process.
Resumo:
Plasmalemmal injury is a frequent event in the life of a cell. Physical disruption of the plasma membrane is common in cells that operate under conditions of mechanical stress. The permeability barrier can also be breached by chemical means: pathogens gain access to host cells by secreting pore-forming toxins and phospholipases, and the host's own immune system employs pore-forming proteins to eliminate both pathogens and the pathogen-invaded cells. In all cases, the influx of extracellular Ca(2+) is being sensed and interpreted as an "immediate danger" signal. Various Ca(2+)-dependent mechanisms are employed to enable plasma membrane repair. Extensively damaged regions of the plasma membrane can be patched with internal membranes delivered to the cell surface by exocytosis. Nucleated cells are capable of resealing their injured plasmalemma by endocytosis of the permeabilized site. Likewise, the shedding of membrane microparticles is thought to be involved in the physical elimination of pores. Membrane blebbing is a further damage-control mechanism, which is triggered after initial attempts at plasmalemmal resealing have failed. The members of the annexin protein family are ubiquitously expressed and function as intracellular Ca(2+) sensors. Most cells contain multiple annexins, which interact with distinct plasma membrane regions promoting membrane segregation, membrane fusion and--in combination with their individual Ca(2+)-sensitivity--allow spatially confined, graded responses to membrane injury.
Resumo:
Cross-linking platelet GPIb with the snake C-type lectin echicetin provides a specific technique for activation via this receptor. This allows GPIb-dependent mechanisms to be studied without the necessity for shear stress-induced binding of von Willebrand factor or primary alpha(IIb)beta(3) involvement. We already showed that platelets are activated, including tyrosine phosphorylation, by echicetin-IgMkappa-induced GPIb cross-linking. We now investigate the mechanism further and demonstrate that platelets, without modulator reagents, spread directly on an echicetin-coated surface, by a GPIb-specific mechanism, causing exocytosis of alpha-granule markers (P-selectin) and activation of alpha(IIb)beta(3). This spreading requires actin polymerization and release of internal calcium stores but is not dependent on external calcium nor on src family tyrosine kinases. Cross-linking of GPIb complex molecules on platelets, either in suspension or via specific surface attachment, is sufficient to induce platelet activation.
Resumo:
Nonallergic rhinitis (NAR) can be defined as a chronic nasal inflammation which is not caused by systemic IgE-dependent mechanisms. It is common and probably affects far more than 200 million people worldwide. Both children and adults are affected. However, its exact prevalence is unknown and its phenotypes need to be evaluated using appropriate methods to better understand its pathophysiology, diagnosis and management. It is important to differentiate between infectious rhinitis, allergic/NAR and chronic rhinosinusitis, as management differs for each of these cases. Characterization of the phenotype, mechanisms and management of NAR represents one of the major unmet needs in allergic and nonallergic diseases. Studies on children and adults are required in order to appreciate the prevalence, phenotype, severity and co-morbidities of NAR. These studies should compare allergic and NAR and consider different age group populations including elderly subjects. Mechanistic studies should be carried out to better understand the disease(s) and risk factors and to guide towards an improved diagnosis and therapy. These studies need to take the heterogeneity of NAR into account. It is likely that neuronal mechanisms, T cells, innate immunity and possibly auto-immune responses all play a role in NAR and may also contribute to the symptoms of allergic rhinitis.
Resumo:
Pore-forming (poly)peptides originating from invading pathogens cause plasma membrane damage in target cells, with consequences as diverse as proliferation or cell death. However, the factors that define the outcome remain unknown. We show that in cells maintaining an intracellular Ca(2+) concentration [Ca(2+)](i) below a critical threshold of 10 microM, repair mechanisms seal off 'hot spots' of Ca(2+) entry and shed them in the form of microparticles, leading to [Ca(2+)](i) reduction and cell recovery. Cells that are capable of preventing an elevation of [Ca(2+)](i) above the critical concentration, yet are unable to complete plasma membrane repair, enter a prolonged phase of [Ca(2+)](i) oscillations, accompanied by a continuous shedding of microparticles. When [Ca(2+)](i) exceeds the critical concentration, an irreversible formation of ceramide platforms within the plasma membrane and their internalisation drives the dying cells beyond the 'point of no return'. These findings show that the extent of [Ca(2+)](i) elevation determines the fate of targeted cells and establishes how different Ca(2+)-dependent mechanisms facilitate either cell survival or death.
Resumo:
Herbivore attack leads to resource conflicts between plant defensive strategies. Photoassimilates are required for defensive compounds and carbon storage below ground and may therefore be depleted or enriched in the roots of herbivore-defoliated plants. The potential role of belowground tissues as mediators of induced tolerance–defense trade-offs is unknown. We evaluated signaling and carbohydrate dynamics in the roots of Nicotiana attenuata following Manduca sexta attack. Experimental and natural genetic variability was exploited to link the observed metabolite patterns to plant tolerance and resistance. Leaf-herbivore attack decreased sugar and starch concentrations in the roots and reduced regrowth from the rootstock and flower production in the glasshouse and the field. Leaf-derived jasmonates were identified as major regulators of this root-mediated resource-based trade-off: lower jasmonate levels were associated with decreased defense, increased carbohydrate levels and improved regrowth from the rootstock. Application and transport inhibition experiments, in combination with silencing of the sucrose non-fermenting (SNF) -related kinase GAL83, indicated that auxins may act as additional signals that regulate regrowth patterns. In conclusion, our study shows that the ability to mobilize defenses has a hidden resource-based cost below ground that constrains defoliation tolerance. Jasmonate- and auxin-dependent mechanisms may lead to divergent defensive plant strategies against herbivores in nature.
Resumo:
1. Positive interactions among plants can increase species richness by relaxing environmental filters and providing more heterogeneous environments. However, it is not known if facilitation could affect coexistence through other mechanisms. Most studies on plant coexistence focus on negative frequency-dependent mechanisms (decreasing the abundance of common species); here, we test if facilitation can enhance coexistence by giving species an advantage when rare. 2. To test our hypothesis, we used a global data set from drylands and alpine environments and measured the intensity of facilitation (based on co-occurrences with nurse plants) for 48 species present in at least 4 different sites and with a range of abundances in the field. We compared these results with the degree of facilitation experienced by species which are globally rare or common (according to the IUCN Red List), and with a larger data base including over 1200 co-occurrences of target species with their nurses. 3. Facilitation was stronger for rare species (i.e. those having lower local abundances or considered endangered by the IUCN) than for common species, and strongly decreased with the abundance of the facilitated species. These results hold after accounting for the distance of each species from its ecological optimum (i.e. the degree of functional stress it experiences). 4. Synthesis. Our results highlight that nurse plants not only increase the number of species able to colonize a given site, but may also promote species coexistence by preventing the local extinction of rare species. Our findings illustrate the role that nurse plants play in conserving endangered species and link the relationship between facilitation and diversity with coexistence theory. As such, they provide further mechanistic understanding on how facilitation maintains plant diversity.
Resumo:
Background Polymorphonuclear neutrophils (PMN) play a key role in host defences against invading microorganisms but can also potentiate detrimental inflammatory reactions in case of excessive or misdirected responses. Intravenous immunoglobulins (IVIg) are used to treat patients with immune deficiencies and, at higher doses, in autoimmune, allergic and systemic inflammatory disorders. Methodology/Principal Findings We used flow cytometry to examine the effects of IVIg on PMN functions and survival, using whole-blood conditions in order to avoid artifacts due to isolation procedures. IVIg at low concentrations induced PMN activation, as reflected by decreased L-selectin and increased CD11b expression at the PMN surface, oxidative burst enhancement, and prolonged cell survival. In contrast, IVIg at higher concentrations inhibited LPS-induced CD11b degranulation and oxidative burst priming, and counteracted LPS-induced PMN lifespan prolongation. Conclusions/Significance IVIg appears to have differential, concentration-dependent effects on PMN, possibly supporting the use of IVIg as either an anti-microbial or an anti-inflammatory agent.
Resumo:
Salmonella typhimurium can colonize the gut, invade intestinal tissues, and cause enterocolitis. In vitro studies suggest different mechanisms leading to mucosal inflammation, including 1) direct modulation of proinflammatory signaling by bacterial type III effector proteins and 2) disruption or penetration of the intestinal epithelium so that penetrating bacteria or bacterial products can trigger innate immunity (i.e., TLR signaling). We studied these mechanisms in vivo using streptomycin-pretreated wild-type and knockout mice including MyD88(-/-) animals lacking an adaptor molecule required for signaling via most TLRs. The Salmonella SPI-1 and the SPI-2 type III secretion systems (TTSS) contributed to inflammation. Mutants that retain only a functional SPI-1 (M556; sseD::aphT) or a SPI-2 TTSS (SB161; DeltainvG) caused attenuated colitis, which reflected distinct aspects of the colitis caused by wild-type S. typhimurium: M556 caused diffuse cecal inflammation that did not require MyD88 signaling. In contrast, SB161 induced focal mucosal inflammation requiring MyD88. M556 but not SB161 was found in intestinal epithelial cells. In the lamina propria, M556 and SB161 appeared to reside in different leukocyte cell populations as indicated by differential CD11c staining. Only the SPI-2-dependent inflammatory pathway required aroA-dependent intracellular growth. Thus, S. typhimurium can use two independent mechanisms to elicit colitis in vivo: SPI-1-dependent and MyD88-independent signaling to epithelial cells and SPI-2-dependent intracellular proliferation in the lamina propria triggering MyD88-dependent innate immune responses.
Resumo:
Activators of 5'-AMP-activated protein kinase (AMPK) 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR), metformin, and exercise activate atypical protein kinase C (aPKC) and ERK and stimulate glucose transport in muscle by uncertain mechanisms. Here, in cultured L6 myotubes: AICAR- and metformin-induced activation of AMPK was required for activation of aPKC and ERK; aPKC activation involved and required phosphoinositide-dependent kinase 1 (PDK1) phosphorylation of Thr410-PKC-zeta; aPKC Thr410 phosphorylation and activation also required MEK1-dependent ERK; and glucose transport effects of AICAR and metformin were inhibited by expression of dominant-negative AMPK, kinase-inactive PDK1, MEK1 inhibitors, kinase-inactive PKC-zeta, and RNA interference (RNAi)-mediated knockdown of PKC-zeta. In mice, muscle-specific aPKC (PKC-lambda) depletion by conditional gene targeting impaired AICAR-stimulated glucose disposal and stimulatory effects of both AICAR and metformin on 2-deoxyglucose/glucose uptake in muscle in vivo and AICAR stimulation of 2-[(3)H]deoxyglucose uptake in isolated extensor digitorum longus muscle; however, AMPK activation was unimpaired. In marked contrast to AICAR and metformin, treadmill exercise-induced stimulation of 2-deoxyglucose/glucose uptake was not inhibited in aPKC-knockout mice. Finally, in intact rodents, AICAR and metformin activated aPKC in muscle, but not in liver, despite activating AMPK in both tissues. The findings demonstrate that in muscle AICAR and metformin activate aPKC via sequential activation of AMPK, ERK, and PDK1 and the AMPK/ERK/PDK1/aPKC pathway is required for metformin- and AICAR-stimulated increases in glucose transport. On the other hand, although aPKC is activated by treadmill exercise, this activation is not required for exercise-induced increases in glucose transport, and therefore may be a redundant mechanism.
Resumo:
The transcription factor IRF4 is involved in several T-cell-dependent chronic inflammatory diseases. To elucidate the mechanisms for pathological cytokine production in colitis, we addressed the role of the IRF transcription factors in human inflammatory bowel disease (IBD) and experimental colitis.
Resumo:
The skeletal muscle phenotype is subject to considerable malleability depending on use. Low-intensity endurance type exercise leads to qualitative changes of muscle tissue characterized mainly by an increase in structures supporting oxygen delivery and consumption. High-load strength-type exercise leads to growth of muscle fibers dominated by an increase in contractile proteins. In low-intensity exercise, stress-induced signaling leads to transcriptional upregulation of a multitude of genes with Ca2+ signaling and the energy status of the muscle cells sensed through AMPK being major input determinants. Several parallel signaling pathways converge on the transcriptional co-activator PGC-1α, perceived as being the coordinator of much of the transcriptional and posttranscriptional processes. High-load training is dominated by a translational upregulation controlled by mTOR mainly influenced by an insulin/growth factor-dependent signaling cascade as well as mechanical and nutritional cues. Exercise-induced muscle growth is further supported by DNA recruitment through activation and incorporation of satellite cells. Crucial nodes of strength and endurance exercise signaling networks are shared making these training modes interdependent. Robustness of exercise-related signaling is the consequence of signaling being multiple parallel with feed-back and feed-forward control over single and multiple signaling levels. We currently have a good descriptive understanding of the molecular mechanisms controlling muscle phenotypic plasticity. We lack understanding of the precise interactions among partners of signaling networks and accordingly models to predict signaling outcome of entire networks. A major current challenge is to verify and apply available knowledge gained in model systems to predict human phenotypic plasticity.
Resumo:
The voltage-gated cardiac potassium channel hERG1 (human ether-à-gogo-related gene 1) plays a key role in the repolarization phase of the cardiac action potential (AP). Mutations in its gene, KCNH2, can lead to defects in the biosynthesis and maturation of the channel, resulting in congenital long QT syndrome (LQTS). To identify the molecular mechanisms regulating the density of hERG1 channels at the plasma membrane, we investigated channel ubiquitylation by ubiquitin ligase Nedd4-2, a post-translational regulatory mechanism previously linked to other ion channels. We found that whole-cell hERG1 currents recorded in HEK293 cells were decreased upon neural precursor cell expressed developmentally down-regulated 4-2 (Nedd4-2) co-expression. The amount of hERG1 channels in total HEK293 lysates and at the cell surface, as assessed by Western blot and biotinylation assays, respectively, were concomitantly decreased. Nedd4-2 and hERG1 interact via a PY motif located in the C-terminus of hERG1. Finally, we determined that Nedd4-2 mediates ubiquitylation of hERG1 and that deletion of this motif affects Nedd4-2-dependent regulation. These results suggest that ubiquitylation of the hERG1 protein by Nedd4-2, and its subsequent down-regulation, could represent an important mechanism for modulation of the duration of the human cardiac action potential.