51 resultados para DENTAL MATERIALS
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Summary The first part of this review examined ISO approval requirements and in vitro testing. In the second part, non-standardized test methods for composite materials are presented and discussed. Physical tests are primarily described. Analyses of surface gloss and alterations, as well as aging simulations of dental materials are presented. Again, the importance of laboratory tests in determining clinical outcomes is evaluated. Differences in the measurement protocols of the various testing institutes and how these differences can in?uence the results are also discussed. Because there is no standardization of test protocols, the values determined by different institutes cannot be directly compared. However, the ranking of the tested materials should be the same if a valid protocol is applied by different institutes. The modulus of elasticity, the expansion after water sorption, and the polishability of the material are all clinically relevant, whereas factors measured by other test protocols may have no clinical correlation. The handling properties of the materials are highly dependent on operators' preferences. Therefore, no standard values can be given.
Resumo:
The first part of this three-part review on the relevance of laboratory testing of composites and adhesives deals with approval requirements for composite materials. We compare the in vivo and in vitro literature data and discuss the relevance of in vitro analyses. The standardized ISO protocols are presented, with a focus on the evaluation of physical parameters. These tests all have a standardized protocol that describes the entire test set-up. The tests analyse flexural strength, depth of cure, susceptibility to ambient light, color stability, water sorption and solubility, and radiopacity. Some tests have a clinical correlation. A high flexural strength, for instance, decreases the risk of fractures of the marginal ridge in posterior restorations and incisal edge build-ups of restored anterior teeth. Other tests do not have a clinical correlation or the threshold values are too low, which results in an approval of materials that show inferior clinical properties (e.g., radiopacity). It is advantageous to know the test set-ups and the ideal threshold values to correctly interpret the material data. Overall, however, laboratory assessment alone cannot ensure the clinical success of a product.
Resumo:
The aim of this study was to determine the influence of thickness and aging on the intrinsic fluorescence of sealing materials and their ability to block fluorescence from the underlying surface as assessed using a laser fluorescence device. Cavities of 0.5 mm and 1 mm depth were drilled into acrylic boards which were placed over two surfaces with different fluorescence properties: a low-fluorescence surface, to assess the intrinsic fluorescence of the sealing materials, and a high-fluorescence surface, to assess the fluorescence-blocking ability of the sealing materials. Ten cavities of each depth were filled with different sealing materials: Adper Scotchbond Multi-Purpose, Adper Single Bond 2, FluroShield, Conseal f and UltraSeal XT Plus. Fluorescence was measured with a DIAGNOdent pen at five different time points: empty cavity, after polymerization, and 1 day, 1 week and 1 month after filling. The individual values after polymerization, as well as the area under the curve for the different periods were submitted to ANOVA and the Tukey test (p < 0.05). At 0.5 mm, Scotchbond, FluroShield and UltraSeal showed insignificant changes in intrinsic fluorescence with aging and lower fluorescence after polymerization than Single Bond and Conseal. At 1 mm, Scotchbond and FluroShield showed the lowest intrinsic fluorescence, but only Scotchbond showed no chagnes in fluorescence with aging. At both depths, Scotchbond blocked significantly less fluorescence. All sealing materials blocked more fluorescence when applied to a depth of 1 mm. At 0.5 mm, fissure sealants blocked more fluorescence than adhesives, and did not show significant changes with aging. Scotchbond had the least affect on the fluorescence from the underlying surface and would probably have the least affect on the monitoring of sealed dental caries by laser fluorescence.
Resumo:
PURPOSE The goal of this study was to investigate whether different computed tomography (CT) energy levels could supply additional information for the differentiation of dental materials for forensic investigations. METHODS Nine different commonly used restorative dental materials were investigated in this study. A total of 75 human third molars were filled with the restorative dental materials and then scanned using the forensic reference phantom in singlesource mode. The mean Hounsfield unit values and standard deviations (SDs) of each material were calculated at 120, 80 and 140 kVp. RESULTS Most of the dental materials could be differentiated at 120 kVp. We found that greater X-ray density of a material resulted in higher SDs and that the material volume could influence the measurements. CONCLUSION Differentiation of dental materials in CT was possible in many cases using single-energy CT scans at 120 kVp. Because of the number of dental restorative materials available and scanner and scan parameter dependence, as well as the CT imaging artifacts, the identification (in contrast to differentiation) was problematic.
Resumo:
To evaluate if depth of cure D(ISO) determined by the ISO 4049 method is accurately reflected with bulk fill materials when compared to depth of cure D(new) determined by Vickers microhardness profiles.
Resumo:
AIM: The aim of this study was to assess the marginal fit of crowns on the Straumann (ITI) Dental Implant System with special consideration of different casting dental materials. MATERIAL AND METHODS: Sixty porcelain-fused-to-metal crowns were fabricated: 18 crowns on standard cone abutments with an impression cylinder, partially prefabricated analogs, no coping and screw-retained (A); 18 crowns on solid abutments without an impression device, no analogs, no coping and cemented (B); and 18 crowns on solid abutments using an impression transfer cap, an analog with a shoulder, no coping and cemented (C). In each group, six crowns were made on epoxy mastercasts (Bluestar), six on synthetic plaster (Moldasynt) and six on super hard stone (Fujirock). Six additional crowns were fabricated with the transversal screw retention system onto the Octa system with impression transfer caps, metal analogs, gold copings and screw-retained (D). Impregum was used as impression material. Crowns of B and C were cemented with KetacCem. Crowns of A and D were fixed with an occlusal screw torqued at 15 N cm. Crowns were embedded, cut and polished. Under a light microscope using a magnification of x 100, the distance between the crown margin (CM) and the shoulder (marginal gap, MG) and the distance between the CM and the end of the shoulder (crown length, CL) was measured. RESULTS: MGs were 15.4+/-13.2 microm (A), 21.2+/-23.1 microm (B), 11+/-12.1 microm (C) and 10.4+/-9.3 microm (D). No statistically significantly differences using either of the casting materials were observed. CLs were -21.3+/-24.8 microm (A), 3+/-28.9 microm (B), 0.5+/-22 microm (C) and 0.1+/-15.8 microm (D). Crowns were shorter on synthetic casting materials compared with stone casts (P<0.005). CONCLUSIONS: CMs fit precisely with both cemented and screw-retained versions as well as when using no, partial or full analogs.
Resumo:
OBJECTIVES The aim of this study was to forecast trends in restorative dentistry over the next 20 years and to identify treatment goals and corresponding properties of restorative materials. METHODS Using the Delphi method, a panel of 3 experts identified 8 key questions, which were sent to experts in restorative and preventive dentistry. In round 1 of this survey, 15 international experts devised a clearer semantic definition of the key questions and the completion of respective items for two additional rounds. In round 2, 125 experts from 35 countries rated the items developed in round 1 using a Likert scale. In round 3, the same 125 experts received the ratings of round 2 and were asked to agree or disagree to these ratings by re-voting on all key questions and items. A total of 105 experts re-voted and finally took part in the complete survey. Among the 8 key questions, two questions were selected for the present report: (Q1) "What will be the future role of restorative treatment?" and (Q6) "What will be the key qualities for clinical success of restorations?" For both questions and the respective items, the experts were asked to evaluate the importance and the feasibility for later calculation of the scientific value (i.e. the opportunity, where opportunity=importance+[importance-feasibility]). RESULTS The three items of highest importance for Q1 were "preservation of existing enamel and dentin tissue," "prevention of secondary caries," and "maintenance of the pulp vitality," and for Q6 they were "optimization of adhesion," "biocompatibility," and "minimizing technical sensitivity." SIGNIFICANCE Bioactivity toward the pulp-dentin complex and prevention of secondary caries were the items generally rated as having the highest opportunity.
Resumo:
Purpose: To investigate the bond strength to dentin of two recent resin-ceramic materials for computer-aided design/computer-aided manufacturing (CAD/CAM) after 24 hours and after six months storage. Methods and Materials: Ninety cylinders were milled out of Lava Ultimate (3M ESPE) and 90 cylinders out of VITA ENAMIC (VITA Zahnfabrik) (dimension of cylinders: ∅=3.6 mm, h=2 mm). All Lava Ultimate cylinders were sandblasted (aluminium oxide, grain size: 27 μm) and cleaned with ethanol, whereas all VITA ENAMIC cylinders were acid-etched (5% hydrofluoric acid) and cleaned with water-spray. According to the three groups of cements used, the cylinders (n=30/resin-ceramic material) were further pretreated with 1) Scotchbond Universal for RelyX Ultimate (3M ESPE), 2) CLEARFIL Ceramic Primer for PANAVIA F2.0 (Kuraray), or 3) no further pretreatment for Ketac Cem Plus (3M ESPE). The cylinders were then bonded to ground human dentin specimens with 1) Scotchbond Universal and RelyX Ultimate (light-cured), 2) ED PRIMER II and PANAVIA F2.0 (light-cured), or 3) no adhesive system; Ketac Cem Plus (self-cured). Shear bond strength (SBS) was measured after 24 hours for 15 specimens/group and after six months (37°C, 100% humidity) for the other 15 specimens/group. SBS-values were statistically analysed with nonparametric ANOVA followed by exact Wilcoxon rank sum tests (α=0.05). Results: SBS of the two resin-ceramic materials and the three cements after 24 hours and after six months storage are shown in Figure 1. The statistical analysis showed that the duration of storage had a significant effect on SBS of Lava Ultimate for all three cements but had no significant effect on SBS of VITA ENAMIC. For Lava Ultimate SBS-values were (MPa; medians after 24 hours/six months): 13.5/22.5 (p=0.04) for RelyX Ultimate, 11.4/5.8 (p=0.0006) for PANAVIA F2.0, and 0.34/0.09 (p=0.04) for Ketac Cem Plus (Fig. 1). For VITA ENAMIC SBS-values were (MPa; medians after 24 hours/six months): 16.0/21.2 (p=0.10) for RelyX Ultimate, 11.4/14.4 (p=0.06) for PANAVIA F2.0, and 0.43/0.41 (p=0.32) for Ketac Cem Plus (Fig. 1). After 24 hours, there was no significant difference in SBS between Lava Ultimate and VITA ENAMIC for all three cements (p≥0.37). After six months, there was no significant difference in SBS between Lava Ultimate and VITA ENAMIC for RelyX Ultimate and Ketac Cem Plus (p≥0.07) whereas for PANAVIA F2.0, SBS was significantly lower for Lava Ultimate than for VITA ENAMIC (p<0.0001). Conclusion: SBS of Lava Ultimate was more affected by six months storage and by the cement used than was VITA ENAMIC.
Resumo:
OBJECTIVE To assess the 5-year survival of metal-ceramic and all-ceramic tooth-supported single crowns (SCs) and to describe the incidence of biological, technical and esthetic complications. METHODS Medline (PubMed), Embase, Cochrane Central Register of Controlled Trials (CENTRAL) searches (2006-2013) were performed for clinical studies focusing on tooth-supported fixed dental prostheses (FDPs) with a mean follow-up of at least 3 years. This was complimented by an additional hand search and the inclusion of 34 studies from a previous systematic review [1,2]. Survival and complication rates were analyzed using robust Poisson's regression models to obtain summary estimates of 5-year proportions. RESULTS Sixty-seven studies reporting on 4663 metal-ceramic and 9434 all-ceramic SCs fulfilled the inclusion criteria. Seventeen studies reported on metal-ceramic crowns, and 54 studies reported on all-ceramic crowns. Meta-analysis of the included studies indicated an estimated survival rate of metal-ceramic SCs of 94.7% (95% CI: 94.1-96.9%) after 5 years. This was similar to the estimated 5-year survival rate of leucit or lithium-disilicate reinforced glass ceramic SCs (96.6%; 95% CI: 94.9-96.7%), of glass infiltrated alumina SCs (94.6%; 95% CI: 92.7-96%) and densely sintered alumina and zirconia SCs (96%; 95% CI: 93.8-97.5%; 92.1%; 95% CI: 82.8-95.6%). In contrast, the 5-year survival rates of feldspathic/silica-based ceramic crowns were lower (p<0.001). When the outcomes in anterior and posterior regions were compared feldspathic/silica-based ceramic and zirconia crowns exhibited significantly lower survival rates in the posterior region (p<0.0001), the other crown types performed similarly. Densely sintered zirconia SCs were more frequently lost due to veneering ceramic fractures than metal-ceramic SCs (p<0.001), and had significantly more loss of retention (p<0.001). In total higher 5 year rates of framework fracture were reported for the all-ceramic SCs than for metal-ceramic SCs. CONCLUSIONS Survival rates of most types of all-ceramic SCs were similar to those reported for metal-ceramic SCs, both in anterior and posterior regions. Weaker feldspathic/silica-based ceramics should be limited to applications in the anterior region. Zirconia-based SCs should not be considered as primary option due to their high incidence of technical problems.
Resumo:
OBJECTIVE To assess the 5-year survival of metal-ceramic and all-ceramic tooth-supported fixed dental prostheses (FDPs) and to describe the incidence of biological, technical and esthetic complications. METHODS Medline (PubMed), Embase and Cochrane Central Register of Controlled Trials (CENTRAL) searches (2006-2013) were performed for clinical studies focusing on tooth-supported FDPs with a mean follow-up of at least 3 years. This was complemented by an additional hand search and the inclusion of 10 studies from a previous systematic review [1]. Survival and complication rates were analyzed using robust Poisson's regression models to obtain summary estimates of 5-year proportions. RESULTS Forty studies reporting on 1796 metal-ceramic and 1110 all-ceramic FDPs fulfilled the inclusion criteria. Meta-analysis of the included studies indicated an estimated 5-year survival rate of metal-ceramic FDPs of 94.4% (95% CI: 91.2-96.5%). The estimated survival rate of reinforced glass ceramic FDPs was 89.1% (95% CI: 80.4-94.0%), the survival rate of glass-infiltrated alumina FDPs was 86.2% (95% CI: 69.3-94.2%) and the survival rate of densely sintered zirconia FDPs was 90.4% (95% CI: 84.8-94.0%) in 5 years of function. Even though the survival rate of all-ceramic FDPs was lower than for metal-ceramic FDPs, the differences did not reach statistical significance except for the glass-infiltrated alumina FDPs (p=0.05). A significantly higher incidence of caries in abutment teeth was observed for densely sintered zirconia FDPs compared to metal-ceramic FDPs. Significantly more framework fractures were reported for reinforced glass ceramic FDPs (8.0%) and glass-infiltrated alumina FDPs (12.9%) compared to metal-ceramic FDPs (0.6%) and densely sintered zirconia FDPs (1.9%) in 5 years in function. However, the incidence of ceramic fractures and loss of retention was significantly (p=0.018 and 0.028 respectively) higher for densely sintered zirconia FDPs compared to all other types of FDPs. CONCLUSIONS Survival rates of all types of all-ceramic FDPs were lower than those reported for metal-ceramic FDPs. The incidence of framework fractures was significantly higher for reinforced glass ceramic FDPs and infiltrated glass ceramic FDPs, and the incidence for ceramic fractures and loss of retention was significantly higher for densely sintered zirconia FDPs compared to metal-ceramic FDPs.
Resumo:
OBJECTIVES: This study evaluated the initial and the artificially aged push-out bond strength between ceramic and dentin produced by one of five resin cements. METHODS: Two-hundred direct ceramic restorations (IPS Empress CAD) were luted to standardized Class I cavities in extracted human molars using one of four self-adhesive cements (SpeedCEM, RelyX Unicem Aplicap, SmartCem2 and iCEM) or a reference etch-and-rinse resin cement (Syntac/Variolink II) (n=40/cement). Push-out bond strength (PBS) was measured (1) after 24h water storage (non-aged group; n=20/cement) or (2) after artificial ageing with 5000 thermal cycles followed by 6 months humid storage (aged group; n=20/cement). Nonparametrical ANOVA and pairwise Wilcoxon rank-sum tests with Bonferroni-Holm adjustment were applied for statistical analysis. The significance level was set at alpha=0.05. In addition, failure mode and fracture pattern were analyzed by stereomicroscope and scanning electron microscopy. RESULTS: Whereas no statistically significant effect of storage condition was found (p=0.441), there was a significant effect of resin cement (p<0.0001): RelyX Unicem showed significantly higher PBS than the other cements. Syntac/Variolink II showed significantly higher PBS than SmartCEM2 (p<0.001). No significant differences were found between SpeedCEM, SmartCem2, and iCEM. The predominant failure mode was adhesive failure of cements at the dentin interface except for RelyX Unicem which in most cases showed cohesive failure in ceramic. SIGNIFICANCE: The resin cements showed marked differences in push-out bond strength when used for luting ceramic restorations to dentin. Variolink II with the etch-and-rinse adhesive Syntac did not perform better than three of the four self-adhesive resin cements tested.
Resumo:
OBJECTIVES: The aim of the study was to evaluate the biological effects of water eluents from polycarbonate based esthetic orthodontic brackets. METHODS: The composite polycarbonate brackets tested were Silkon Plus (SL, fiber-glass-reinforced), Elan ME (EL, ceramic particle-reinforced) and Elegance (EG, fiber-glass-reinforced). An unfilled polyoxymethylene bracket (Brilliant, BR) was used as control. The brackets' composition was analyzed by ATR-FTIR spectrometry. The cytotoxicity and estrogenicity of the eluents obtained after 3months storage of the brackets in water (37°C) were investigated in murine fibroblasts (NIH 3T3), breast (MCF-7) and cervical cancer (CCl-2/Hela) cell lines. RESULTS: SL and EG were based on aromatic-polycarbonate matrix, whereas EL consisted of an aromatic polycarbonate-polyethylene terepthalate copolymer. A significant induction of cell death and a concurrent decrease in cell proliferation was noted in the EG eluent-treated cells. Moreover, EG eluent significantly reduced the levels of the estrogen signaling associated gene pS2, specifically in MCF7 cells, suggesting that cell death induced by this material is associated with downregulation of estrogen signaling pathways. Even though oxidative stress mechanisms were equally activated by all eluents, the EG eluents induced expression of apoptosis inducing factor (AIF) and reduced Bcl-xL protein levels. SIGNIFICANCE: Some polycarbonate-based composite brackets when exposed to water release substances than activate mitochondrial apoptosis.
Resumo:
There is a need for evaluating zirconia surface modifications and their potential impact on the biological response of osteogenic cells. Grit blasted zirconia discs were either left untreated or underwent acid or alkaline etching. Adhesion and osteogenic differentiation of MG63 cells was determined after one week of culture. The macro-scaled roughness of the grit blasted zirconia discs, independent of the surface treatment, was within a narrow range and only slightly smoother than titanium discs. However, the alkaline- and acid-etching led to an increase of the micro-roughness of the surface. The surface modifications had no effect on cell spreading and did not cause significant change in the expression of differentiation markers. Thus, in this respective setting, morphologic changes observed upon treatment of grit blasted zirconia discs with acid or alkaline do not translate into changes in MG63 cell adhesion or differentiation and are comparable to findings with anodized titanium discs.
Resumo:
OBJECT: The aim of our study was to demonstrate the image quality of the new device using human cadavers, extending the horizon of available imaging modalities in forensic medicine. MATERIALS AND METHODS: Six human cadavers were examined, revealing C-arm data sets of the head, neck thorax, abdomen and pelvis. High-resolution mode was performed with 500 fluoroscopy shots during a 190 degrees orbital movement with a constant tube voltage of 100 kV and a current of 4.6 mA. Based on these data sets subsequent three-dimensional reconstructions were generated. RESULTS: Reconstructed data sets revealed high-resolution images of all skeletal structures in a near-CT quality. The same image quality was available in all reconstruction planes. Artefacts caused by restorative dental materials are less accentuated in CBCT data sets. The system configuration was not powerful enough to generate sufficient images of intracranial structures. CONCLUSION: After the here-demonstrated encouraging preliminary results, the forensic indications that would be suitable for imaging with a 3D C-arm have to be defined. Promising seems the visualization local limited region of interest as the cervical spine or the facial skeleton.