15 resultados para DELIVERY SYSTEMS
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The pulmonary route is very attractive for drug delivery by inhalation. In this regard, nanoparticulate drug delivery systems, designed as multifunctional engineered nanoparticles, are very promising since they combine several opportunities like a rather uniform distribution of drug dose among all ventilated alveoli allowing for uniform cellular drug internalization. However, although the field of nanomedicine offers multiple opportunities, it still is in its infancy and the research has to proceed in order to obtain a specific targeting of the drug combined with minimum side effects. If inhaled nanoparticulate drug delivery systems are deposited on the pulmonary surfactant, they come into contact with phospholipids and surfactant proteins. It is highly likely that the interaction of nanoparticulate drug delivery systems with surfactant phospholipids and proteins will be able to mediate/modulate the further fate of this specific drug delivery system. In the present comment, we discuss the potential interactions of nanoparticulate drug delivery systems with pulmonary surfactant as well as the potential consequences of this interaction.
Resumo:
Site-specific delivery of anticancer agents to tumors represents a promising therapeutic strategy because it increases efficacy and reduces toxicity to normal tissues compared with untargeted drugs. Sterically stabilized immunoliposomes (SIL), guided by antibodies that specifically bind to well internalizing antigens on the tumor cell surface, are effective nanoscale delivery systems capable of accumulating large quantities of anticancer agents at the tumor site. The epithelial cell adhesion molecule (EpCAM) holds major promise as a target for antibody-based cancer therapy due to its abundant expression in many solid tumors and its limited distribution in normal tissues. We generated EpCAM-directed immunoliposomes by covalently coupling the humanized single-chain Fv antibody fragment 4D5MOCB to the surface of sterically stabilized liposomes loaded with the anticancer agent doxorubicin. In vitro, the doxorubicin-loaded immunoliposomes (SIL-Dox) showed efficient cell binding and internalization and were significantly more cytotoxic against EpCAM-positive tumor cells than nontargeted liposomes (SL-Dox). In athymic mice bearing established human tumor xenografts, pharmacokinetic and biodistribution analysis of SIL-Dox revealed long circulation times in the blood with a half-life of 11 h and effective time-dependent tumor localization, resulting in up to 15% injected dose per gram tissue. These favorable pharmacokinetic properties translated into potent antitumor activity, which resulted in significant growth inhibition (compared with control mice), and was more pronounced than that of doxorubicin alone and nontargeted SL-Dox at low, nontoxic doses. Our data show the promise of EpCAM-directed nanovesicular drug delivery for targeted therapy of solid tumors.
Resumo:
Few biopharmaceutical preparations developed from biologicals are available for tissue regeneration and scar management. When developing biological treatments with cellular therapy, selection of cell types and establishment of consistent cell banks are crucial steps in whole-cell bioprocessing. Various cell types have been used in treatment of wounds to reduce scar to date including autolog and allogenic skin cells, platelets, placenta, and amniotic extracts. Experience with fetal cells show that they may provide an interesting cell choice due to facility of outscaling and known properties for wound healing without scar. Differential gene profiling has helped to point to potential indicators of repair which include cell adhesion, extracellular matrix, cytokines, growth factors, and development. Safety has been evidenced in Phase I and II clinical fetal cell use for burn and wound treatments with different cell delivery systems. We present herein that fetal cells present technical and therapeutic advantages compared to other cell types for effective cell-based therapy for wound and scar management.
Resumo:
A confocal imaging and image processing scheme is introduced to visualize and evaluate the spatial distribution of spectral information in tissue. The image data are recorded using a confocal laser-scanning microscope equipped with a detection unit that provides high spectral resolution. The processing scheme is based on spectral data, is less error-prone than intensity-based visualization and evaluation methods, and provides quantitative information on the composition of the sample. The method is tested and validated in the context of the development of dermal drug delivery systems, introducing a quantitative uptake indicator to compare the performances of different delivery systems is introduced. A drug penetration study was performed in vitro. The results show that the method is able to detect, visualize and measure spectral information in tissue. In the penetration study, uptake efficiencies of different experiment setups could be discriminated and quantitatively described. The developed uptake indicator is a step towards a quantitative assessment and, in a more general view apart from pharmaceutical research, provides valuable information on tissue composition. It can potentially be used for clinical in vitro and in vivo applications.
Resumo:
Nanoscale drug delivery systems, such as sterically stabilized immunoliposomes binding to internalizing tumor-associated antigens, can increase therapeutic efficacy and reduce toxicity to normal tissues compared with nontargeted liposomes. The epithelial cell adhesion molecule (EpCAM) is of interest as a ligand for targeted drug delivery because it is abundantly expressed in solid tumors but shows limited distribution in normal tissues. To generate EpCAM-specific immunoliposomes for targeted cancer therapy, the humanized single-chain Fv antibody fragment 4D5MOCB was covalently linked to the exterior of coated cationic liposomes. As anticancer agent, we encapsulated the previously described antisense oligonucleotide 4625 specific for both bcl-2 and bcl-xL. The EpCAM-targeted immunoliposomes (SIL25) showed specific binding to EpCAM-overexpressing tumor cells, with a 10- to 20-fold increase in binding compared with nontargeted control liposomes. No enhanced binding was observed on EpCAM-negative control cells. On cell binding, SIL25 was efficiently internalized by receptor-mediated endocytosis, ultimately leading to down-regulation of both bcl-2 and bcl-xL expression on both the mRNA and protein level, which resulted in enhanced tumor cell apoptosis. In combination experiments, the use of SIL25 led to a 2- to 5-fold sensitization of EpCAM-positive tumor cells of diverse origin to death induction by doxorubicin. Our data show the promise of EpCAM-specific drug delivery systems, such as antisense-loaded immunoliposomes, for targeted cancer therapy.
Resumo:
Despite the success of drug-eluting stents (DES) in reducing restenosis and the need for target vessel revascularization, several deficiencies have been unraveled since their first clinical application including the risk of stent thrombosis, undesired effects due to the stent polymer as well as the stent itself, and incomplete inhibition of restenosis (especially in complex lesions). Several novel stent systems are being investigated in order to address these issues. In second-generation DES, the rapamycin analogues zotarolimus and everolimus (and more recently biolimus) have been most extensively studied. Furthermore, special stent-coatings to actively promote endothelial healing (in order to reduce the risk of stent thrombosis) and to further reduce restenosis have been employed. To avoid undesirable effects of currently applied (durable) polymers, biocompatible and bioabsorbable polymers as well as DES delivery systems without the need for a polymer have been developed. Bioabsorbable stents, both polymeric and metallic, were developed to decrease potential late complications after stent implantation. Although most of these innovative novel principles intuitively seem appealing and demonstrate good results in initial clinical evaluations, long-term large-scale studies are necessary in order to reliably assess whether these novel systems are truly superior to first-generation DES with respect to safety and efficacy.
Resumo:
BACKGROUND: there is inadequate evidence to support currently formulated NHS strategies to achieve health promotion and preventative care in older people through broad-based screening and assessment in primary care. The most extensively evaluated delivery instrument for this purpose is Health Risk Appraisal (HRA). This article describes a trial using HRA to evaluate the effect on health behaviour and preventative-care uptake in older people in NHS primary care. METHODS: a randomised controlled trial was undertaken in three London primary care group practices. Functionally independent community-dwelling patients older than 65 years (n = 2,503) received a self-administered Health Risk Appraisal for Older Persons (HRA-O) questionnaire leading to computer-generated individualised written feedback to participants and general practitioners (GPs), integrated into practice information-technology (IT) systems. All primary care staff received training in preventative health in older people. The main outcome measures were self-reported health behaviour and preventative care uptake at 1-year follow-up. RESULTS: of 2,503 individuals randomised, 2,006 respondents (80.1%) (intervention, n = 940, control n = 1,066) were available for analysis. Intervention group respondents reported slightly higher pneumococcal vaccination uptake and equivocal improvement in physical activity levels compared with controls. No significant differences were observed for any other categories of health behaviour or preventative care measures at 1-year follow-up. CONCLUSIONS: HRA-O implemented in this way resulted in minimal improvement of health behaviour or uptake of preventative care measures in older people. Supplementary reinforcement involving contact by health professionals with patients over and above routine clinical encounters may be a prerequisite to the effectiveness of IT-based delivery systems for health promotion in older people.
Resumo:
Due to the constant expansion within the nanotechnology industry in the last decade, nanomaterials are omnipresent in society today. Nanotechnology-based products have numerous different applications ranging from electronic (e.g., advanced memory chips) to industrial (e.g., coatings or composites) to biomedical (e.g., drug delivery systems, diagnostics). Although these new nanomaterials can be found in many "everyday" products, their effects on the human body have still to be investigated in order to identify not only their risk, but also their potential benefits towards human health. Since the lung is commonly thought to be the main portal of entry into the human body for nanomaterials released within the environment, this review will attempt to summarise the current knowledge and understanding of how nanomaterials interact with the respiratory tract. Furthermore, the advantages and disadvantages of different experimental model systems that are commonly used to study this exposure route to the human body will be discussed.
Resumo:
Smartphone-App zur Kohlenhydratberechnung Neue Technologien wie Blutzuckersensoren und moderne Insulinpumpen prägten die Therapie des Typ-1-Diabetes (T1D) in den letzten Jahren in wesentlichem Ausmaß. Smartphones sind aufgrund ihrer rasanten technischen Entwicklung eine weitere Plattform für Applikationen zur Therapieunterstützung bei T1D. GoCARB Hierbei handelt es sich um ein zur Kohlenhydratberechnung entwickeltes System für Personen mit T1D. Die Basis für Endanwender stellt ein Smartphone mit Kamera dar. Zur Berechnung werden 2 mit dem Smartphone aus verschiedenen Winkeln aufgenommene Fotografien einer auf einem Teller angerichteten Mahlzeit benötigt. Zusätzlich ist eine neben dem Teller platzierte Referenzkarte erforderlich. Die Grundlage für die Kohlenhydratberechnung ist ein Computer-Vision-gestütztes Programm, das die Mahlzeiten aufgrund ihrer Farbe und Textur erkennt. Das Volumen der Mahlzeit wird mit Hilfe eines dreidimensional errechneten Modells bestimmt. Durch das Erkennen der Art der Mahlzeiten sowie deren Volumen kann GoCARB den Kohlenhydratanteil unter Einbeziehung von Nährwerttabellen berechnen. Für die Entwicklung des Systems wurde eine Bilddatenbank von mehr als 5000 Mahlzeiten erstellt und genutzt. Resümee Das GoCARB-System befindet sich aktuell in klinischer Evaluierung und ist noch nicht für Patienten verfügbar.
Resumo:
Segmented ionization chambers represent a good solution to monitor the position, the intensity and the shape of ion beams in hadrontherapy. Pixel and strip chambers have been developed for both passive scattering and active scanning dose delivery systems. In particular, strip chambers are optimal for pencil beam scanning, allowing for spatial and time resolutions below 0.1 mm and 1 ms, respectively. The MATRIX pixel and the Strip Accurate Monitor for Beam Applications (SAMBA) detectors are described in this paper together with the results of several beam tests and industrial developments based on these prototypes.
Resumo:
Wireless Mesh Networks (WMNs) are increasingly deployed to enable thousands of users to share, create, and access live video streaming with different characteristics and content, such as video surveillance and football matches. In this context, there is a need for new mechanisms for assessing the quality level of videos because operators are seeking to control their delivery process and optimize their network resources, while increasing the user’s satisfaction. However, the development of in-service and non-intrusive Quality of Experience assessment schemes for real-time Internet videos with different complexity and motion levels, Group of Picture lengths, and characteristics, remains a significant challenge. To address this issue, this article proposes a non-intrusive parametric real-time video quality estimator, called MultiQoE that correlates wireless networks’ impairments, videos’ characteristics, and users’ perception into a predicted Mean Opinion Score. An instance of MultiQoE was implemented in WMNs and performance evaluation results demonstrate the efficiency and accuracy of MultiQoE in predicting the user’s perception of live video streaming services when compared to subjective, objective, and well-known parametric solutions.
Resumo:
A scientific forum on “The Future Science of Exoplanets and Their Systems,” sponsored by Europlanet* and the International Space Science Institute (ISSI)† and co-organized by the Center for Space and Habitability (CSH)‡ of the University of Bern, was held during December 5 and 6, 2012, in Bern, Switzerland. It gathered 24 well-known specialists in exoplanetary, Solar System, and stellar science to discuss the future of the fast-expanding field of exoplanetary research, which now has nearly 1000 objects to analyze and compare and will develop even more quickly over the coming years. The forum discussions included a review of current observational knowledge, efforts for exoplanetary atmosphere characterization and their formation, water formation, atmospheric evolution, habitability aspects, and our understanding of how exoplanets interact with their stellar and galactic environment throughout their history. Several important and timely research areas of focus for further research efforts in the field were identified by the forum participants. These scientific topics are related to the origin and formation of water and its delivery to planetary bodies and the role of the disk in relation to planet formation, including constraints from observations as well as star-planet interaction processes and their consequences for atmosphere-magnetosphere environments, evolution, and habitability. The relevance of these research areas is outlined in this report, and possible themes for future ISSI workshops are identified that may be proposed by the international research community over the coming 2–3 years.
Resumo:
Despite major improvements in diagnostics and interventional therapies, cardiovascular diseases remain a major health care and socio-economic burden both in western and developing countries, in which this burden is increasing in close correlation to economic growth. Health authorities and the general population have started to recognize that the fight against these diseases can only be won if their burden is faced by increasing our investment on interventions in lifestyle changes and prevention. There is an overwhelming evidence of the efficacy of secondary prevention initiatives including cardiac rehabilitation in terms of reduction in morbidity and mortality. However, secondary prevention is still too poorly implemented in clinical practice, often only on selected populations and over a limited period of time. The development of systematic and full comprehensive preventive programmes is warranted, integrated in the organization of national health systems. Furthermore, systematic monitoring of the process of delivery and outcomes is a necessity. Cardiology and secondary prevention, including cardiac rehabilitation, have evolved almost independently of each other and although each makes a unique contribution it is now time to join forces under the banner of preventive cardiology and create a comprehensive model that optimizes long term outcomes for patients and reduces the future burden on health care services. These are the aims that the Cardiac Rehabilitation Section of the European Association for Cardiovascular Prevention & Rehabilitation has foreseen to promote secondary preventive cardiology in clinical practice.
Resumo:
In this work, we propose a novel network coding enabled NDN architecture for the delivery of scalable video. Our scheme utilizes network coding in order to address the problem that arises in the original NDN protocol, where optimal use of the bandwidth and caching resources necessitates the coordination of the forwarding decisions. To optimize the performance of the proposed network coding based NDN protocol and render it appropriate for transmission of scalable video, we devise a novel rate allocation algorithm that decides on the optimal rates of Interest messages sent by clients and intermediate nodes. This algorithm guarantees that the achieved flow of Data objects will maximize the average quality of the video delivered to the client population. To support the handling of Interest messages and Data objects when intermediate nodes perform network coding, we modify the standard NDN protocol and introduce the use of Bloom filters, which store efficiently additional information about the Interest messages and Data objects. The proposed architecture is evaluated for transmission of scalable video over PlanetLab topologies. The evaluation shows that the proposed scheme performs very close to the optimal performance