32 resultados para DEFORESTATION
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Madagascar is currently developing a policy and strategies to enhance the sustainable management of its natural resources, encouraged by United Nations Framework Convention on Climate Change (UNFCCC) and REDD. To set up a sustainable financing scheme methodologies have to be provided that estimate, prevent and mitigate leakage, develop national and regional baselines, and estimate carbon benefits. With this research study this challenge was tried to be addressed by analysing a lowland rainforest in the Analanjirofo region in the district of Soanierana Ivongo, North East of Madagascar. For two distinguished forest degradation stages: “low degraded forest” and “degraded forest” aboveground biomass and carbon stock was assessed. The corresponding rates of carbon within those two classes were calculated and linked to a multi-temporal set of SPOT satellite data acquired in 1991, 2004 and 2009. Deforestation and particularly degradation and the related carbon stock developments were analysed. With the assessed data for the 3 years 1991, 2004 and 2009 it was possible to model a baseline and to develop a forest prediction for 2020 for Analanjirofo region in the district of Soanierana Ivongo. These results, developed applying robust methods, may provide important spatial information regarding the priorities in planning and implementation of future REDD+ activities in the area.
Resumo:
Previous studies have shown that collective property rights offer higher flexibility than individual property and improve sustainable community-based forest management. Our case study, carried out in the Beni department of Bolivia, does not contradict this assertion, but shows that collective rights have been granted in areas where ecological contexts and market facilities were less favourable to intensive land use. Previous experiences suggest investigating political processes in order to understand the criteria according to which access rights were distributed. Based on remote sensing and on a multi-level land governance framework, our research confirms that land placed under collective rights, compared to individual property, is less affected by deforestation among Andean settlements. However, analysis of the historical process of land distribution in the area shows that the distribution of property rights is the result of a political process based on economic, spatial, and environmental strategies that are defined by multiple stakeholders. Collective titles were established in the more remote areas and distributed to communities with lower productive potentialities. Land rights are thus a secondary factor of forest cover change which results from diverse political compromises based on population distribution, accessibility, environmental perceptions, and expected production or extraction incomes.
Resumo:
This study aims to evaluate the direct effects of anthropogenic deforestation on simulated climate at two contrasting periods in the Holocene, ~6 and ~0.2 k BP in Europe. We apply We apply the Rossby Centre regional climate model RCA3, a regional climate model with 50 km spatial resolution, for both time periods, considering three alternative descriptions of the past vegetation: (i) potential natural vegetation (V) simulated by the dynamic vegetation model LPJ-GUESS, (ii) potential vegetation with anthropogenic land use (deforestation) from the HYDE3.1 (History Database of the Global Environment) scenario (V + H3.1), and (iii) potential vegetation with anthropogenic land use from the KK10 scenario (V + KK10). The climate model results show that the simulated effects of deforestation depend on both local/regional climate and vegetation characteristics. At ~6 k BP the extent of simulated deforestation in Europe is generally small, but there are areas where deforestation is large enough to produce significant differences in summer temperatures of 0.5–1 °C. At ~0.2 k BP, extensive deforestation, particularly according to the KK10 model, leads to significant temperature differences in large parts of Europe in both winter and summer. In winter, deforestation leads to lower temperatures because of the differences in albedo between forested and unforested areas, particularly in the snow-covered regions. In summer, deforestation leads to higher temperatures in central and eastern Europe because evapotranspiration from unforested areas is lower than from forests. Summer evaporation is already limited in the southernmost parts of Europe under potential vegetation conditions and, therefore, cannot become much lower. Accordingly, the albedo effect dominates in southern Europe also in summer, which implies that deforestation causes a decrease in temperatures. Differences in summer temperature due to deforestation range from −1 °C in south-western Europe to +1 °C in eastern Europe. The choice of anthropogenic land-cover scenario has a significant influence on the simulated climate, but uncertainties in palaeoclimate proxy data for the two time periods do not allow for a definitive discrimination among climate model results.
Resumo:
The north-eastern escarpment of Madagascar harbours the island’s last remaining large-scale humid forest massifs surrounded by a small-scale agricultural mosaic. There is high deforestation, commonly thought to be caused by shifting cultivation practiced by local land users to produce upland rice. However, little is known about the dynamics between forest and shifting cultivation systems at a regional level. Our study presents a first attempt to quantify changes in the extent of forest and different agricultural land cover classes, and to identify the main dynamics of land cover change for two intervals, 1995–2005 and 2005–2011. Over the 16-year study period, the speed of forest loss increased, the total area of upland rice production remained almost stable, and the area of irrigated rice fields slightly increased. While our findings seem to confirm a general trend of land use intensification, deforestation through shifting cultivation is still on the rise. Deforestation mostly affects the small forest fragments interspersed in the agricultural mosaic and is slowly leading to a homogenization of the landscape. These findings have important implications for future interventions to slow forest loss in the region, as the processes of agricultural expansion through shifting cultivation versus intensified land use cannot per se be considered mutually exclusive.
Resumo:
Worldwide, forests provide a wide variety of resources to rural inhabitants, and especially to the poor. In Madagascar, forest resources make important contributions to the livelihoods of the rural population living at the edges of these forests. Although people benefit from forest resources, forests are continuously cleared and converted into arable land. Despite long-term efforts on the part of researchers, development cooperation projects and government, Madagascar has not been able to achieve a fundamental decrease in deforestation. The question of why deforestation continues in spite of such efforts remains. To answer this question, we aimed at understanding deforestation and forest fragmentation from the perspective of rural households in the Manompana corridor on the east coast. Applying a sustainable livelihood approach, we explored local social-ecological systems to understand: (i) how livelihood strategies leading to deforestation evolve and (ii) how the decrease of forest impacts on households' strategies. Results highlight the complexity of the environmental, cultural and political context in which households’ decision-making takes place. Further, we found crucial impacts of deforestation and forest fragmentation on livelihood systems, but also recognized that people have been able to adapt to the changing landscapes without major impacts on their welfare.
Resumo:
Due to its extraordinary biodiversity and rapid deforestation, north-eastern Madagascar is a conservation hotspot of global importance. Reducing shifting cultivation is a high priority for policy-makers and conservationists; however, spatially explicit evidence of shifting cultivation is lacking due to the difficulty of mapping it with common remote sensing methods. To overcome this challenge, we adopted a landscape mosaic approach to assess the changes between natural forests, shifting cultivation and permanent cultivation systems at the regional level from 1995 to 2011. Our study confirmed that shifting cultivation is still being used to produce subsistence rice throughout the region, but there is a trend of intensification away from shifting cultivation towards permanent rice production, especially near protected areas. While large continuous forest exists today only in the core zones of protected areas, the agricultural matrix is still dominated by a dense cover of tree crops and smaller forest fragments. We believe that this evidence makes a crucial contribution to the development of interventions to prevent further conversion of forest to agricultural land while improving local land users' well-being.
Resumo:
Swidden agriculture is often deemed responsible for deforestation and forest degradation in tropical regions, yet swidden landscapes are commonly not visible on land cover/use maps, making it difficult to prove this assertion. For a future REDD+ scheme, the correct identification of deforestation and forest degradation and linking these processes to land use is crucial. However, it is a key challenge to distinguish degradation and deforestation from temporal vegetation dynamics inherent to swiddening. In this article we present an approach for spatial delineation of swidden systems based on landscape mosaics. Furthermore we introduce a classification for change processes based on the change matrix of these landscape mosaics. Our approach is illustrated by a case study in Viengkham district in northern Laos. Over a 30-year time period the swidden landscapes have increased in extent and they have degraded, shifting from long crop–fallow cycles to short cycles. From 2007 to 2009 degradation within the swidden system accounted for half of all the landscape mosaics change processes. Pioneering shifting cultivation did not prevail. The landscape mosaics approach could be used in a swidden compatible monitoring, reporting and verification (MRV) system of a future REDD+ framework.
Resumo:
The international mechanism for Reducing Greenhouse Gas Emissions from Deforestation and Forest Degradation (REDD) supposedly offers new opportunities for combining climate mitigation, conservation of the environment, and socio-economic development for development countries. In Laos REDD is abundantly promoted by the government and development agencies as a potential option for rural development. Yet, basic information for carbon management is missing: to date no knowledge is available at the national level on the quantities of carbon stored in the Lao landscapes. In this study we present an approach for spatial assessment of vegetation-based carbon stocks. We used Google Earth, Landsat and MODIS satellite imagery and refined the official national land cover data to assess carbon stocks. Our study showed that more than half (52%) of carbon stock of Laos is stored in natural forests, but that 70% of this stock is located outside of national protected areas. On the basis of two carbon-centered land use scenarios we calculated that between 30 and 40 million tons of carbon could be accumulated in shifting cultivation areas; this is less than 3% of the existing total stock. Our study suggests that the main focus of REDD in Laos should be on the conservation of existing carbon stocks, giving highest priority to the prevention of deforestation outside of national protected areas.
Resumo:
Reducing Emissions from Deforestation and forest Degradation and enhancing forest carbon stocks in developing countries (REDD+) is heavily promoted in Laos. REDD+ is often perceived as an opportunity to jointly address climate change and poverty and, therefore, could come timely for Laos to combine its prominent national target of poverty eradication with global climate mitigation efforts. Countrywide planning of the right approaches to REDD+ combined with poverty alleviation requires knowledge of the spatial combination of poverty and carbon stocks at the national level. This study combined spatial information on carbon stored in vegetation and on poverty and created carbon-poverty typologies for the whole country at the village level. We found that 11% of the villages of Laos have high to very high average village-level carbon stock densities and a predominantly poor population. These villages cover 20% of the territory and are characterized by low population density. Shifting cultivation areas in the northwestern parts of the country have a higher carbon mitigation potential than areas in the central and eastern highlands due to a more favorable climate. Finally, we found that in Laos the majority (58%) of poor people live in areas with low carbon stock densities without major potential to store carbon. Accordingly, REDD+ cannot be considered a core instrument for poverty alleviation. The carbon-poverty typologies presented here provide answers to basic questions related to planning and managing of REDD+. They could serve as a starting point for the design of systems to monitor both socioeconomic and environmental development at the national level.
Resumo:
Secondary forests in the Lower Mekong Basin (LMB) are increasingly recognized as a valuable component of land cover, providing ecosystem services and benefits for local users. A large proportion of secondary forests in the LMB, especially in the uplands, are maintained by swidden cultivation. In order to assess the regional-scale status and dynamic trends of secondary forests in the LMB, an analysis of existing regional land cover data for 1993 and 1997 was carried out and forms the basis of this paper. To gain insight into the full range of dynamics affecting secondary forests beyond net-change rates, cross-tabulation matrix analyses were performed. The investigations revealed that secondary forests make up the largest share of forest cover in the LMB, with over 80% located in Laos and Cambodia. The deforestation rates for secondary forests are 3 times higher than the rates for other forest categories and account for two-thirds of the total deforestation. These dynamics are particularly pronounced in the less advanced countries of the LMB, especially in Laos, where national policies and the opening up of national economies seem to be the main drivers of further degradation and loss of secondary forests.
Resumo:
Reducing Emissions from Deforestation and Forest Degradation and enhancing forest carbon stocks (REDD+) is a performance-based payment mechanism currently being debated in international and national environmental policy and planning forums. As the mechanism is based on conditionality, payments must reflect land stewards’ level of compliance with carbon-efficient management practices. However, lack of clarity in land governance and carbon rights could undermine REDD+ implementation. Strategies are needed to avoid perverse incentives resulting from the commoditization of forest carbon stocks and, importantly, to identify and secure the rights of legitimate recipients of future REDD+ payments. We propose a landscape-level approach to address potential conflicts related to carbon tenure and REDD+ benefit sharing. We explore various land-tenure scenarios and their implications for carbon ownership in the context of a research site in northern Laos. Our case study shows that a combination of relevant scientific tools, knowledge, and participatory approaches can help avoid the marginalization of rural communities during the REDD+ process. The findings demonstrate that participatory land-use planning is an important step in ensuring that local communities are engaged in negotiating REDD+ schemes and that such negotiations are transparent. Local participation and agreements on land-use plans could provide a sound basis for developing efficient measurement, reporting, and verification systems for REDD+.
Resumo:
The conversion of forest into farmland has resulted in mosaic landscapes in many parts of the tropics. From a conservation perspective, it is important to know whether tropical farmlands can buffer species loss caused by deforestation and how different functional groups of birds respond to land-use intensification. To test the degree of differentiation between farmland and forest bird communities across feeding guilds, we analyzed stable C and N isotopes in blood and claws of 101 bird species comprising four feeding guilds along a tropical forest-farmland gradient in Kenya. We additionally assessed the importance of farmland insectivores for pest control in C4 crops by using allometric relationships, C stable isotope ratios and estimates of bird species abundance. Species composition differed strongly between forest and farmland bird communities. Across seasons, forest birds primarily relied on C3 carbon sources, whereas many farmland birds also assimilated C4 carbon. While C sources of frugivores and omnivores did not differ between forest and farmland communities, insectivores used more C4 carbon in the farmland than in the forest. Granivores assimilated more C4 carbon than all other guilds in the farmland. We estimated that insectivorous farmland birds consumed at least 1,000 kg pest invertebrates km−2 year−1. We conclude that tropical forest and farmland understory bird communities are strongly separated and that tropical farmlands cannot compensate forest loss for insectivorous forest understory birds. In tropical farmlands, insectivorous bird species provide a quantitatively important contribution to pest control.
Resumo:
The north-eastern escarpment of Madagascar has been labelled a global biodiversity hotspot due to its extremely high rates of endemic species which are heavily threatened by accelerated deforestation rates and landscape change. The traditional practice of shifting cultivation or "tavy" used by the majority of land users in this area to produce subsistence rice is commonly blamed for these threats. A wide range of stakeholders ranging from conservation to development agencies, and from the private to the public sector has therefore been involved in trying to find solutions to protect the remaining forest fragments and to increase agricultural production. Consequently, provisioning, regulating and socio-cultural services of this forest-mosaic landscape are fundamentally altered leading to trade-offs between them and consequently new winners and losers amongst the stakeholders at different scales. However, despite a growing amount of evidence from case studies analysing local changes, the regional dynamics of the landscape and their contribution to such trade-offs remain poorely understood. This study therefore aims at using generalised landscape units as a base for the assessment of multi-level stakeholder claims on ecosystem services to inform negotiation, planning and decision making at a meso-scale. The presented study applies a mixed-method approach combining remote sensing, GIS and socio-economic methods to reveal current landscape dynamics, their change over time and the corresponding ecosystem service trade-offs induced by diverse stakeholder claims on the regional level. In a first step a new regional land cover classification for three points in time (1995, 2005 and 2011) was conducted including agricultural classes characteristic for shifting cultivation systems. Secondly, a novel GIS approach, termed “landscape mosaics approach” originally developed to assess dynamics of shifting cultivation landscapes in Laos was applied. Through this approach generalised landscape mosaics were generated allowing for a better understanding of changes in land use intensities instead of land cover. As a next step we will try to use these landscape units as proxies to map provisioning and regulating ecosystem services throughout the region. Through the overlay with other regional background data such as accessibility and population density and information from a region-wide stakeholder analysis, multiscale trade-offs between different services will be highlighted. The trade-offs observed on the regional scale will then be validated through a socio-economic ground-truthing within selected sites at the local scale. We propose that such meso-scale knowledge is required by all stakeholders involved in decision making towards sustainable development of north-eastern Madagascar.
Resumo:
Reducing emissions from deforestation and forest degradation plus (REDD+) encourages economic support for reducing deforestation and conserving or increasing existing forest carbon stocks. The way in which incentives are structured affects trade-offs between local livelihoods, carbon emission reduction, and the cost-effectiveness of a REDD + programme. Looking at first-hand empirical data from 208 farming households in the Bolivian Amazon froma household economy perspective, our study explores two policy options: 1) compensated reduction of emissions fromold-growth forest clearing for agriculture, and 2) direct payments for labour input into sustainable forest anagement combined with a commitment not to clear old-growth forest. Our results indicate that direct payments for sustainable forest management – an approach that focuses on valuing farmers' labour input – can be more cost-effective than compensated reduction and in some cases is themost appropriate choice for achieving improved household incomes, permanence of changes, avoidance of leakages, and community-based institutional enforcement for sustainable forest management.