6 resultados para DBH

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite its appeal to explain plant invasions, the enemy release hypothesis (ERH) remains largely unexplored for tropical forest trees. Even scarcer are ERH studies conducted on the same host species at both the community and biogeographical scale, irrespective of the system or plant life form. In Cabrits National Park, Dominica, we observed patterns consistent with enemy release of two introduced, congeneric mahogany species, Swietenia macrophylla and S. mahagoni, planted almost 50 years ago. Swietenia populations at Cabrits have reproduced, with S. macrophylla juveniles established in and out of plantation areas at densities much higher than observed in its native range. Swietenia macrophylla juveniles also experienced significantly lower leaf-level herbivory (~3.0%) than nine co-occurring species native to Dominica (8.4–21.8%), and far lower than conspecific herbivory observed in its native range (11%–43%, on average). These complimentary findings at multiple scales support ERH, and confirm that Swietenia has naturalized at Cabrits. However, Swietenia abundance was positively correlated with native plant diversity at the seedling stage, and only marginally negatively correlated with native plant abundance for stems ≥1-cm dbh. Taken together, these descriptive patterns point to relaxed enemy pressure from specialized enemies, specifically the defoliator Steniscadia poliophaea and the shoot-borer Hypsipyla grandella, as a leading explanation for the enhanced recruitment of Swietenia trees documented at Cabrits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To understand succession in dipterocarp rain forest after logging, the structure, species composition and dynamics of primary (PF) and secondary (SF) forest at Danum were compared. In 10 replicate 0.16-ha plots per forest type trees >= 10 cm gbh (3.2 cm dbh) were measured in 1995 and 2001. The SF had been logged in 1988, which allowed successional change to be recorded at 8 and 13 years. In 2001, saplings (1.0-3.1 cm dbh) were measured in nested quadrats. The forest types were similar in mean radiation at 2 m height, and in density, basal area and species number of all trees. Among small (10 <= 31.4) and large ( >= 31.4 cm gbh) trees, in both 1995 and 2001, there were 10- and 3-fold more dipterocarps in SF than PF respectively; and averaging over the two dates, there were correspondingly ca. 10- and 18-fold more pioneers. Mortality was ca. 60% higher in SF than PF, largely due to a seven-fold difference for pioneers: for dipterocarps there was little difference. Recruitment was similar in PF and SE Stem growth rates were 37% higher in SF than PF for all trees, although dipterocarps showed the opposite trend. Among saplings, dipterocarps dominated SF with a 10-fold higher density than in PF. For dipterocarps, the light (LH) and medium-heavy (MHH) canopy hardwoods, and the shade-tolerant, smaller-stature other (OTH) species (e.g. Hopea and Vatica) were in the ratios ca. 40:15:45 in SF and 85: < 1:15 in PF. LHs had higher mortality than OTHs in SE In PF ca. 80% of the saplings were LH: in SF ca. 70% were OTH. The predominance of OTHs in SF is explained by the logging of primary rain forest which was in a likely late stage of recovery from natural disturbance, plus the continuing shaded conditions in the understorey promoted by dense pioneer vegetation. At 13 years after logging succession appeared to be inhibited: LHs were being suppressed but MHHs and OTHs persisted. Succession in lowland dipterocarp, rain forests may therefore depend on the successional state of the primary forest when it is logged. A review of logged versus unlogged studies in Borneo highlights the need for more detailed ecological comparisons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leafing phenology of two dry-forest sites on soils of different depth (S = shallow, D = deep) at Shipstern Reserve, Belize, were compared at the start of the rainy season (April-June 2000). Trees greater than or equal to 2.5 cm dbh were recorded weekly for 8 wk in three 0.04-ha plots per site. Ten species were analysed individually for their phenological patterns, of which the three most common were Bursera simaruba, Metopium brownei and Jatropha gaumeri. Trees were divided into those in the canopy (> 10 cm dbh) and the subcanopy (less than or equal to 10 cm dbh). Site S had larger trees on average than site D. The proportion of trees flushing leaves at any one time was generally higher in site S than in site D, for both canopy and subcanopy trees. Leaf flush started 2 wk earlier in site S than site D for subcanopy trees, but only 0.5 wk earlier for the canopy trees. Leaf flush duration was 1.5 wk longer in site S than site D. Large trees in the subcanopy flushed leaves earlier than small ones at both sites but in the canopy just at site D. Large trees flushed leaves earlier than small ones in three species and small trees flushed leaves more rapidly in two species. Bursera and Jatropha followed the general trends but Metopium, with larger trees in site D than site S, showed the converse with onset of flushing I wk earlier in site D than site S. Differences in response of the canopy and subcanopy trees on each site can be accounted for by the predominance of spring-flushing or stem-succulent species in site S and a tendency for evergreen species to occur in site D. Early flushing of relatively larger trees in site D most likely requires access to deeper soil water reserves but small and large trees utilize stored tree water in site S.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The montane forests of Mount Kilimanjaro in Tanzania have been subjected to a long history of selective logging. However, since 1984 logging of indigenous trees is prohibited. Today, these forests allow us to evaluate the long-term effects of selective logging. We mapped the height and diameter at breast height (DBH) of all trees >10 cm DBH on 10 sites of 0.25 ha. Five sites represent non-logged forests, another five selectively logged forests. We tested whether forests were still visibly affected 30–40 years after selective logging in terms of their forest structure and tree diversity. Additionally we compared tree densities of different species guilds, including disturbance-indicator species, late-successional species and main timber species. Furthermore, we specifically compared the community size distributions of selectively logged and non-logged forests, first across all species and then for the most important timber species, Ocotea usambarensis, alone. 30–40 years after selective logging forests still showed a higher overall stem density, mainly due to higher relative abundances of small trees (<50 cm DBH) in general, and higher densities of small size class stems of late-successional species specifically. For O. usambarensis, the selectively logged sites harboured higher relative abundances of small trees and lower relative abundances of harvestable trees. The higher relative abundance of small O. usambarensis-stems in selectively logged forests appears promising for future forest recovery. Thus, outside protected areas, selective logging may be a sustainable management option if logging cycles are considerably longer than 40 years, enough large source trees remain, and the recruiting O. usambarensis individuals find open space for their establishment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plant functional traits reflect different evolutionary responses to environmental variation, and among extant species determine the outcomes of interactions between plants and their environment, including other plant species. Thus, combining phylogenetic and trait-based information can be a powerful approach for understanding community assembly processes across a range of spatial scales. We used this approach to investigate tree community composition at Phou Khao Khouay National Park (18°14’-18°32’N; 102°38’- 102°59’E), Laos, where several distinct forest types occur in close proximity. The aim of our study was to examine patterns of plant community assembly across the strong environmental gradients evident at our site. We hypothesized that differences in tree community composition were being driven by an underlying gradient in soil conditions. Thus, we predicted that environmental filtering would predominate at the site and that the filtering would be strongest on sandier soil with low pH, as these are the conditions least favorable to plant growth. We surveyed eleven 0.25 ha (50x50 m) plots for all trees above 10 cm dbh (1221 individual trees, including 47 families, 70 genera and 123 species) and sampled soils in each plot. For each species in the community, we measured 11 commonly studied plant functional traits covering both the leaf and wood economic spectrum traits and we reconstructed a phylogenetic tree for 115 of the species in the community using rbcL and matK sequences downloaded from Genebank (other species were not available). Finally we compared the distribution of trait values and species at two scales (among plots and 10x10m subplots) to examine trait and phylogenetic community structures. Although there was strong evidence that an underlying soil gradient was determining patterns of species composition at the site, our results did not support the hypothesis that the environmental filtering dominated community assembly processes. For the measured plant functional traits there was no consistent pattern of trait dispersion across the site, either when traits were considered individually or when combined in a multivariate analysis. However, there was a significant correlation between the degree of phylogenetic dispersion and the first principle component axis (PCA1) for the soil parameters.Moreover, the more phylogenetically clustered plots were on sandier soils with lower pH. Hence, we suggest that the community assembly processes across our sitemay reflect the influence ofmore conserved traits that we did not measure. Nevertheless, our results are equivocal and other interpretations are possible. Our study illustrates some difficulties in combining trait and phylogenetic approaches that may result from the complexities of integrating spatial and evolutionary processes that vary at different scales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Predicting the timing and amount of tree mortality after a forest fire is of paramount importance for post-fire management decisions, such as salvage logging or reforestation. Such knowledge is particularly needed in mountainous regions where forest stands often serve as protection against natural hazards (e.g., snow avalanches, rockfalls, landslides). In this paper, we focus on the drivers and timing of mortality in fire-injured beech trees (Fagus sylvatica L.) in mountain regions. We studied beech forests in the southwestern European Alps, which burned between 1970 and 2012. The results show that beech trees, which lack fire-resistance traits, experience increased mortality within the first two decades post-fire with a timing and amount strongly related to the burn severity. Beech mortality is fast and ubiquitous in high severity sites, whereas small- (DBH <12 cm) and intermediate-diameter (DBH 12–36 cm) trees face a higher risk to die in moderate-severity sites. Large-diameter trees mostly survive, representing a crucial ecological legacy for beech regeneration. Mortality remains low and at a level similar to unburnt beech forests for low burn severity sites. Beech trees diameter, the presence of fungal infestation and elevation are the most significant drivers of mortality. The risk of beech to die increases toward higher elevation and is higher for small-diameter than for large-diameter trees. In case of secondary fungi infestation beech faces generally a higher risk to die. Interestingly, fungi that initiate post-fire tree mortality differ from fungi occurring after mechanical injury. From a management point of view, the insights about the controls of post-fire mortality provided by this study should help in planning post-fire silvicultural measures in montane beech forests.