5 resultados para DAPHNIA

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Daphnia can ingest methane-oxidizing bacteria and incorporate methanogenic carbon into their biomass, leading to low stable carbon isotope ratios (expressed as δ13C values) of their tissue. Therefore, δ13C analysis of Daphnia resting eggs (ephippia) in lake sediment records can potentially be used to reconstruct past in-lake availability of methane (CH4). However, detailed multilake studies demonstrating that δ13C values of recently deposited Daphnia ephippia (δ13Cephippia) are systematically related to in-lake CH4 concentrations (CH4aq) are still missing. We measured δ13Cephippia from surface sediments of 15 small lakes in Europe, and compared these values with late-summer CH4aq. δ13Cephippia ranged from −51.6‰ to −25.9‰, and was strongly correlated with CH4aq in the surface water and above the sediment (r −0.73 and −0.77, respectively), whereas a negative rather than the expected positive correlation was found with δ13C values of carbon dioxide (CO2) (r −0.54), and no correlation was observed with CO2aq. At eight sites, offsets between δ13 CCO2 and δ13Cephippia exceeded offsets between δ13 CCO2 and δ13Calgae reported in literature. δ13Cephippia was positively correlated with δ13C values of sedimentary organic matter (r 0.54), but up to 20.7‰ lower in all except one of the lakes (average −6.1‰). We conclude that incorporation of methanogenic carbon prior to ephippia formation must have been widespread by Daphnia in our study lakes, especially those with high CH4aq. Our results suggest a systematic relationship between δ13Cephippia values and CH4aq in small temperate lakes, and that δ13Cephippia analysis on sediment records may provide insights into past changes in in-lake CH4aq.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stable isotopic composition of fossil resting eggs (ephippia) of Daphnia spp. is being used to reconstruct past environmental conditions in lake ecosystems. However, the underlying assumption that the stable isotopic composition of the ephippia reflects the stable isotopic composition of the parent Daphnia, of their diet and of the environmental water have yet to be confirmed in a controlled experimental setting. We performed experiments with Daphnia pulicaria cultures, which included a control treatment conducted at 12 °C in filtered lake water and with a diet of fresh algae and three treatments in which we manipulated the stable carbon isotopic composition (δ13C value) of the algae, stable oxygen isotopic composition (δ18O value) of the water and the water temperature, respectively. The stable nitrogen isotopic composition (δ15N value) of the algae was similar for all treatments. At 12 °C, differences in algal δ13C values and in δ18O values of water were reflected in those of Daphnia. The differences between ephippia and Daphnia stable isotope ratios were similar in the different treatments (δ13C: +0.2 ± 0.4 ‰ (standard deviation); δ15N: −1.6 ± 0.4 ‰; δ18O: −0.9 ± 0.4 ‰), indicating that changes in dietary δ13C values and in δ18O values of water are passed on to these fossilizing structures. A higher water temperature (20 °C) resulted in lower δ13C values in Daphnia and ephippia than in the other treatments with the same food source and in a minor change in the difference between δ13C values of ephippia and Daphnia (to −1.3 ± 0.3 ‰). This may have been due to microbial processes or increased algal respiration rates in the experimental containers, which may not affect Daphnia in natural environments. There was no significant difference in the offset between δ18O and δ15N values of ephippia and Daphnia between the 12 and 20 °C treatments, but the δ18O values of Daphnia and ephippia were on average 1.2 ‰ lower at 20 °C than at 12 °C. We conclude that the stable isotopic composition of Daphnia ephippia provides information on that of the parent Daphnia and of the food and water they were exposed to, with small offsets between Daphnia and ephippia relative to variations in Daphnia stable isotopic composition reported from downcore studies. However, our experiments also indicate that temperature may have a minor influence on the δ13C, δ15N and δ18O values of Daphnia body tissue and ephippia. This aspect deserves attention in further controlled experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding past methane dynamics in arctic wetlands and lakes is crucial for estimating future methane release. Methane fluxes from lake ecosystems have increasingly been studied, yet only few reconstructions of past methane emissions from lakes are available. In this study, we develop an approach to assess changes in methane availability in lakes based on δ13C of chitinous invertebrate remains and apply this to a sediment record from a Siberian thermokarst lake. Diffusive methane fluxes from the surface of ten newly sampled Siberian lakes and seven previously studied Swedish lakes were compared to taxon-specific δ13C values of invertebrate remains from lake surface sediments to investigate whether these invertebrates assimilated 13C-depleted carbon typical for methane. Remains of chironomid larvae of the tribe Orthocladiinae that, in the study lakes, mainly assimilate plant-derived carbon had higher δ13C than other invertebrate groups. δ13C of other invertebrates such as several chironomid groups (Chironomus, Chironomini, Tanytarsini, and Tanypodinae), cladocerans (Daphnia), and ostracods were generally lower. δ13C of Chironomini and Daphnia, and to a lesser extent Tanytarsini was variable in the lakes and lower at sites with higher diffusive methane fluxes. δ13C of Chironomini, Tanytarsini, and Daphnia were correlated significantly with diffusive methane flux in the combined Siberian and Swedish dataset (r = −0.72, p = 0.001, r = −0.53, p = 0.03, and r = −0.81, p < 0.001, respectively), suggesting that δ13C in these invertebrates was affected by methane availability. In a second step, we measured δ13C of invertebrate remains from a sediment record of Lake S1, a shallow thermokarst lake in northeast Siberia. In this record, covering the past ca 1000 years, δ13C of taxa most sensitive to methane availability (Chironomini, Tanytarsini, and Daphnia) was lowest in sediments deposited from ca AD 1250 to ca AD 1500, and after AD 1970, coinciding with warmer climate as indicated by an independent local temperature record. As a consequence the offset in δ13C between methane-sensitive taxa and bulk organic matter was higher in these sections than in other parts of the core. In contrast, δ13C of other invertebrate taxa did not show this trend. Our results suggest higher methane availability in the study lake during warmer periods and that thermokarst lakes can respond dynamically in their methane output to changing environmental conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Taxon-specific stable carbon isotope (δ13C) analysis of chitinous remains of invertebrates can provide valuable information about the carbon sources used by invertebrates living in specific habitats of lake ecosystems (for example, sediments, water column, or aquatic vegetation). This is complementary to δ13C of sedimentary organic matter (SOM), which provides an integrated signal of organic matter produced in a lake and its catchment, and of diagenetic processes within sediments. In a sediment record from Strandsjön (Sweden) covering the past circa 140 years, we analyzed SOM geochemistry (δ13C, C:Natomic, organic carbon content) and δ13C of chitinous invertebrate remains in order to examine whether taxon-specific δ13C records could be developed for different invertebrate groups and whether these analyses provide insights into past changes of organic carbon sources for lacustrine invertebrates available in benthic and planktonic compartments of the lake. Invertebrate taxa included benthic chironomids (Chironomus, Chironomini excluding Chironomus, Tanytarsini, and Tanypodinae), filter-feeders on suspended particulate organic matter (Daphnia, Plumatella and Cristatella mucedo), and Rhabdocoela. δ13C of chironomid remains indicated periodic availability of 13C-depleted carbon sources in the benthic environment of the lake as δ13C values of the different chironomid taxa fluctuated simultaneously between -34.7 and -30.5‰ (VPDB). Daphnia and Bryozoa showed parallel changes in their δ13C values which did not coincide with variations in δ13C of chironomids, though, and a 2-3‰ decrease since circa AD 1960. The decrease in δ13C of Daphnia and Bryozoa could indicate a decrease in phytoplankton δ13C as a result of lower lake productivity, which is in accordance with historical information about the lake that suggests a shift to less eutrophic conditions after AD 1960. In contrast, Rhabdocoela cocoons were characterized by relatively high δ13C values (-30.4 to -28.2‰) that did not show a strong temporal trend, which could be related to the predatory feeding mode and wide prey spectrum of this organism group. The taxon-specific δ13C analyses of invertebrate remains indicated that different carbon sources were available for the benthic chironomid larvae than for the filter-feeding Daphnia and bryozoans. Our results therefore demonstrate that taxon-specific analysis of δ13C of organic invertebrate remains can provide complementary information to measurements on bulk SOM and that δ13C of invertebrate remains may allow the reconstruction of past changes in carbon sources and their δ13C in different habitats of lake ecosystems.