21 resultados para D EXCHANGE INTERACTION

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three-dimensional oxalate-based {[Ru(bpy)3][Cu2xNi2(1-x)(ox)3]}n (0≤ x ≤ 1, ox = C2O42-, bpy = 2,2‘bipyridine) were synthesized. The structure was determined for x = 1 by X-ray diffraction on single crystal. The compound crystallizes in the cubic space group P4132. It shows a three-dimensional 10-gon 3-connected (10,3) anionic network where copper(II) has an unusual tris(bischelated) environment. X-ray powder diffraction patterns and their Rietveld refinement show that all the compounds along the series are isostructural and single-phased. According to X-ray absorption spectroscopy, copper(II) and nickel(II) have an octahedral environment, respectively elongated and trigonally distorted. As shown by natural circular dichroism, the optically active forms of {[Ru(bpy)3][CuxNi2(1-x)(ox)3]}n are obtained starting from resolved Δ- or Λ-[Ru(bpy)3]2+. The Curie−Weiss temperatures range between −55 (x = 1) and −150 K (x = 0). The antiferromagnetic exchange interaction thus decreases when the copper contents increases in agreement with the crystallographic structure of the compounds and the electronic structure of the metal ions. At low temperature, the compounds exhibit complex long-range ordered magnetic behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rate of extra-hepatic lactate production and the route of influx of lactate to the liver may influence both hepatic and extra-hepatic lactate exchange. We assessed the dose-response of hepatic and extra-hepatic lactate exchange during portal and central venous lactate infusion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Host determinants of HIV-1 viral tropism include factors from producer cells that affect the efficiency of productive infection and factors in target cells that block infection after viral entry. TRIM5 restricts HIV-1 infection at an early post-entry step through a mechanism associated with rapid disassembly of the retroviral capsid. Topoisomerase I (TOP1) appears to play a role in HIV-1 viral tropism by incorporating into or otherwise modulating virions affecting the efficiency of a post-entry step, as the expression of human TOP1 in African Green Monkey (AGM) virion-producing cells increased the infectivity of progeny virions by five-fold. This infectivity enhancement required human TOP1 residues 236 and 237 as their replacement with the AGM counterpart residues abolished the infectivity enhancement. Our previous studies showed that TOP1 interacts with BTBD1 and BTBD2, two proteins which co-localize with the TRIM5 splice variant TRIM5 in cytoplasmic bodies. Because BTBD1 and BTBD2 interact with one HIV-1 viral tropism factor, TOP1, and co-localize with a splice variant of another, we investigated the potential involvement of BTBD1 and BTBD2 in HIV-1 restriction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cellulose nanofibers are an attractive component of a broad range of nanomaterials. Their intriguing mechanical properties and low cost, as well as the renewable nature of cellulose make them an appealing alternative to carbon nanotubes (CNTs), which may pose a considerable health risk when inhaled. Little is known, however, concerning the potential toxicity of aerosolized cellulose nanofibers. Using a 3D in vitro triple cell coculture model of the human epithelial airway barrier, it was observed that cellulose nanofibers isolated from cotton (CCN) elicited a significantly (p < 0.05) lower cytotoxicity and (pro-)inflammatory response than multiwalled CNTs (MWCNTs) and crocidolite asbestos fibers (CAFs). Electron tomography analysis also revealed that the intracellular localization of CCNs is different from that of both MWCNTs and CAFs, indicating fundamental differences between each different nanofibre type in their interaction with the human lung cell coculture. Thus, the data shown in the present study highlights that not only the length and stiffness determine the potential detrimental (biological) effects of any nanofiber, but that the material used can significantly affect nanofiber-cell interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The inflammatory response is a critical component of ischemic stroke. In addition to its physiological role, the mechanisms behind transendothelial recruitment of immune cells also offer a unique therapeutic opportunity for translational stem cell therapies. Recent reports have demonstrated homing of neural stem cells (NSC) into the injured brain areas after intravascular delivery. However, the mechanisms underlying the process of transendothelial recruitment remain largely unknown. Here we describe the critical role of the chemokine CCL2 and its receptor CCR2 in targeted homing of NSC after ischemia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

29I is one of the major dose-determining nuclides in the safety analysis of deep storage of radioactive waste. Iodine forms anionic species that hardly sorb on the surfaces of common host-rock minerals. Recently, interest has arisen on the role of pyrite, an accessory mineral capable of binding anionic selenium. Whereas the interaction of selenium with pyrite is well documented, corresponding results on iodine sorption are still scarce and controversial. Pyrite is present in argicilleous rocks which are being considered in many countries as potential host rocks for a radioactive waste repository. The uptake of iodide (I−) on natural pyrite was investigated under nearly anoxic conditions (O2 < 5 ppm) over a wide concentration range (10−11–10−3 M total I−) using 125I as the radioactive tracer. Weak but measurable sorption was observed; distribution coefficients (R d) were less than 0.002 m3 kg−1 and decreased with increasing total iodide concentration. Iodide sorption was connected to the presence of oxidized clusters on the pyrite surface, which were presumably formed by reaction with limited amounts of dissolved oxygen. The results obtained indicated that pyrite cannot be considered as an effective scavenger of 129I under the geochemical conditions prevailing in underground radioactive waste geologic storage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bovine herpesvirus 1 (BoHV-1) and BoHV-5 are closely related pathogens of cattle, but only BoHV-5 is considered a neuropathogen. We engineered intertypic gD exchange mutants with BoHV-1 and BoHV-5 backbones in order to address their in vitro and in vivo host ranges, with particular interest in invasion of the brain. The new viruses replicated in cell culture with similar dynamics and to titers comparable to those of their wild-type parents. However, gD of BoHV-5 (gD5) was able to interact with a surprisingly broad range of nectins. In vivo, gD5 provided a virulent phenotype to BoHV-1 in AR129 mice, featuring a high incidence of neurological symptoms and early onset of disease. However, only virus with the BoHV-5 backbone, independent of the gD type, was detected in the brain by immunohistology. Thus, gD of BoHV-5 confers an extended cellular host range to BoHV-1 and may be considered a virulence factor but does not contribute to the invasion of the brain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The regulation of cell morphology is a dynamic process under the control of multiple protein complexes acting in a coordinated manner. Phosphoinositide 3-kinases (PI3K) and their lipid products are widely involved in cytoskeletal regulation by interacting with proteins regulating RhoGTPases. Class II PI3K isoforms have been implicated in the regulation of the actin cytoskeleton, although their exact role and mechanism of action remain to be established. In this report, we have identified Dbl, a Rho family guanine nucleotide exchange factor (RhoGEF) as an interaction partner of PI3KC2β. Dbl was co-immunoprecipitated with PI3KC2β in NIH3T3 cells and cancer cell lines. Over-expression of Class II phosphoinositide 3-kinase PI3KC2β in NIH3T3 fibroblasts led to increased stress fibres formation and cell spreading. Accordingly, we found high basal RhoA activity and increased serum response factor (SRF) activation downstream of RhoA upon serum stimulation. In contrast, the dominant-negative form of PI3KC2β strongly reduced cell spreading and stress fibres formation, as well as SRF response. Platelet-derived growth factor (PDGF) stimulation of wild-type PI3KC2β over-expressing NIH3T3 cells strongly increased Rac and c-Jun N-terminal kinase (JNK) activation, but failed to show similar effect in the cells with the dominant-negative enzyme. Interestingly, epidermal growth factor (EGF) and PDGF stimulation led to increased extracellular signal-regulated kinase (Erk) and Akt pathway activation in cells with elevated wild-type PI3KC2β expression. Furthermore, increased expression of PI3KC2β protected NIH3T3 from detachment-dependent death (anoikis) in a RhoA-dependent manner. Taken together, these findings suggest that PI3KC2β modulates the cell morphology and survival through a specific interaction with Dbl and the activation of RhoA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

So far, little is known about the interaction of nanoparticles with lung cells, the entering of nanoparticles, and their transport through the blood stream to other organs. The entering and localization of different nanoparticles consisting of differing materials and of different charges were studied in human red blood cells. As these cells do not have any phagocytic receptors on their surface, and no actinmyosin system, we chose them as a model for nonphagocytic cells to study how nanoparticles penetrate cell membranes. We combined different microscopic techniques to visualize fine and nanoparticles in red blood cells: (I) fluorescent particles were analyzed by laser scanning microscopy combined with digital image restoration, (II) gold particles were analyzed by conventional transmission electron microscopy and energy filtering transmission electron microscopy, and (III) titanium dioxide particles were analyzed by energy filtering transmission electron microscopy. By using these differing microscopic techniques we were able to visualize and detect particles < or = 0.2 microm and nanoparticles in red blood cells. We found that the surface charge and the material of the particles did not influence their entering. These results suggest that particles may penetrate the red blood cell membrane by a still unknown mechanism different from phagocytosis and endocytosis.