35 resultados para Cytotoxicity, Immunologic
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Abstract The aim of this study was to assess the effects of a series of different surface coated quantum dots (QDs) (organic, carboxylated [COOH] and amino [NH(2)] polytethylene glycol [PEG]) on J774.A1 macrophage cell viability and to further determine which part of the QDs cause such toxicity. Cytotoxic examination (MTT assay and LDH release) showed organic QDs to induce significant cytotoxicity up to 48 h, even at a low particle concentration (20 nM), whilst both COOH and NH(2) (PEG) QDs caused reduced cell viability and cell membrane permeability after 24 and 48 h exposure at 80 nM. Subsequent analysis of the elements that constitute the QD core, core/shell and (organic QD) surface coating showed that the surface coating drives QD toxicity. Elemental analysis (ICP-AES) after 48 h, however, also observed a release of Cd from organic QDs. In conclusion, both the specific surface coating and core material can have a significant impact on QD toxicity.
Resumo:
Abstract Nanoparticulate silver coatings for orthopaedic implants promise to decrease postoperative infection rates. However, silver-induced cytotoxicity on bone cells has not been investigated in detail. This study investigated the cytotoxic effects of silver nano- and microparticles and Ag(+) on osteoblasts (OBs) and osteoclasts (OCs) and correlated their effects with the antibacterial efficacy on Staphylococcus epidermidis. Silver nanoparticles (50 nm) exhibited strong cytotoxic effects on OBs and OCs. Weak cytotoxic effects were observed for silver microparticles (3 μm). The cytotoxicity was primarily mediated by a size-dependent release of Ag(+). Antibacterial effects occurred at Ag(+) concentrations that were 2-4 times higher than those inducing cytotoxic effects. Such adverse effects on OB and OC survival may have deleterious effects on the biocompatibility of orthopaedic implants. Our study represents an important step toward the detailed investigation of orthopaedic implant with nanoparticulate silver coatings prior to their widespread clinical usage.
Resumo:
Magnetic iron oxide nanoparticles have found application as contrast agents for magnetic resonance imaging (MRI) and as switchable drug delivery vehicles. Their stabilization as colloidal carriers remains a challenge. The potential of poly(ethylene imine)-g-poly(ethylene glycol) (PEGPEI) as stabilizer for iron oxide (γ-Fe₂O₃) nanoparticles was studied in comparison to branched poly(ethylene imine) (PEI). Carrier systems consisting of γ-Fe₂O₃-PEI and γ-Fe₂O₃-PEGPEI were prepared and characterized regarding their physicochemical properties including magnetic resonance relaxometry. Colloidal stability of the formulations was tested in several media and cytotoxic effects in adenocarcinomic epithelial cells were investigated. Synthesized γ-Fe₂O₃ cores showed superparamagnetism and high degree of crystallinity. Diameters of polymer-coated nanoparticles γ-Fe₂O₃-PEI and γ-Fe₂O₃-PEGPEI were found to be 38.7 ± 1.0 nm and 40.4 ± 1.6 nm, respectively. No aggregation tendency was observable for γ-Fe₂O₃-PEGPEI over 12 h even in high ionic strength media. Furthermore, IC₅₀ values were significantly increased by more than 10-fold when compared to γ-Fe₂O₃-PEI. Formulations exhibited r₂ relaxivities of high numerical value, namely around 160 mM⁻¹ s⁻¹. In summary, novel carrier systems composed of γ-Fe₂O₃-PEGPEI meet key quality requirements rendering them promising for biomedical applications, e.g. as MRI contrast agents.
Resumo:
Based on the structural similarity of viral fusion proteins within the family Paramyxoviridae, we tested recently described and newly synthesized acetanilide derivatives for their capacity to inhibit measles virus (MV)-, canine distemper virus (CDV)- and Nipah virus (NiV)-induced membrane fusion. We found that N-(3-cyanophenyl)-2-phenylacetamide (compound 1) has a high capacity to inhibit MV- and CDV-induced (IC(50) muM), but not NiV-induced, membrane fusion. This compound is of outstanding interest because it can be easily synthesized and its cytotoxicity is low [50 % cytotoxic concentration (CC(50)) >/= 300 muM], leading to a CC(50)/IC(50) ratio of approximately 100. In addition, primary human peripheral blood lymphocytes and primary dog brain cell cultures (DBC) also tolerate high concentrations of compound 1. Infection of human PBMC with recombinant wild-type MV is inhibited by an IC(50) of approximately 20 muM. The cell-to-cell spread of recombinant wild-type CDV in persistently infected DBC can be nearly completely inhibited by compound 1 at 50 muM, indicating that the virus spread between brain cells is dependent on the activity of the viral fusion protein. Our findings demonstrate that this compound is a most applicable inhibitor of morbillivirus-induced membrane fusion in tissue culture experiments including highly sensitive primary cells.
Resumo:
The brain is in many ways an immunologically and pharmacologically privileged site. The blood-brain barrier (BBB) of the cerebrovascular endothelium and its participation in the complex structure of the neurovascular unit (NVU) restrict access of immune cells and immune mediators to the central nervous system (CNS). In pathologic conditions, very well-organized immunologic responses can develop within the CNS, raising important questions about the real nature and the intrinsic and extrinsic regulation of this immune privilege. We assess the interactions of immune cells and immune mediators with the BBB and NVU in neurologic disease, cerebrovascular disease, and intracerebral tumors. The goals of this review are to outline key scientific advances and the status of the science central to both the neuroinflammation and CNS barriers fields, and highlight the opportunities and priorities in advancing brain barriers research in the context of the larger immunology and neuroscience disciplines. This review article was developed from reports presented at the 2011 Annual Blood-Brain Barrier Consortium Meeting.
Resumo:
OBJECTIVE: To compare regimens consisting of either efavirenz or nevirapine and two or more nucleoside reverse transcriptase inhibitors (NRTIs) among HIV-infected, antiretroviral-naive, and AIDS-free individuals with respect to clinical, immunologic, and virologic outcomes. DESIGN: Prospective studies of HIV-infected individuals in Europe and the US included in the HIV-CAUSAL Collaboration. METHODS: Antiretroviral therapy-naive and AIDS-free individuals were followed from the time they started an NRTI, efavirenz or nevirapine, classified as following one or both types of regimens at baseline, and censored when they started an ineligible drug or at 6 months if their regimen was not yet complete. We estimated the 'intention-to-treat' effect for nevirapine versus efavirenz regimens on clinical, immunologic, and virologic outcomes. Our models included baseline covariates and adjusted for potential bias introduced by censoring via inverse probability weighting. RESULTS: A total of 15 336 individuals initiated an efavirenz regimen (274 deaths, 774 AIDS-defining illnesses) and 8129 individuals initiated a nevirapine regimen (203 deaths, 441 AIDS-defining illnesses). The intention-to-treat hazard ratios [95% confidence interval (CI)] for nevirapine versus efavirenz regimens were 1.59 (1.27, 1.98) for death and 1.28 (1.09, 1.50) for AIDS-defining illness. Individuals on nevirapine regimens experienced a smaller 12-month increase in CD4 cell count by 11.49 cells/mul and were 52% more likely to have virologic failure at 12 months as those on efavirenz regimens. CONCLUSIONS: Our intention-to-treat estimates are consistent with a lower mortality, a lower incidence of AIDS-defining illness, a larger 12-month increase in CD4 cell count, and a smaller risk of virologic failure at 12 months for efavirenz compared with nevirapine.
Resumo:
Human intravenous immunoglobulin (IVIg) preparations are increasingly used for the treatment of autoimmune diseases. Earlier work demonstrated the presence of autoantibodies against Fas in IVIg, suggesting that IVIg might be able to induce caspase-dependent cell death in Fas-sensitive cells. In this study, we demonstrate that sialic acid-binding Ig-like lectin 9 (Siglec) represents a surface molecule on neutrophils that is activated by IVIg, resulting in caspase-dependent and caspase-independent forms of cell death. Neutrophil death was mediated by naturally occurring anti-Siglec-9 autoantibodies present in IVIg. Moreover, the efficacy of IVIg-mediated neutrophil killing was enhanced by the proinflammatory cytokines granulocyte/macrophage colony-stimulating factor (GM-CSF) and interferon-gamma (IFN-gamma), and this additional cell death required reactive oxygen species (ROSs) but not caspases. Anti- Siglec-9 autoantibody-depleted IVIg failed to induce this caspase-independent neutrophil death. These findings contribute to our understanding of how IVIg preparations exert their immunoregulatory effects under pathologic conditions and may provide a possible explanation for the neutropenia that is sometimes seen in association with IVIg therapy.
Resumo:
BACKGROUND: We sought to characterize the impact that hepatitis C virus (HCV) infection has on CD4 cells during the first 48 weeks of antiretroviral therapy (ART) in previously ART-naive human immunodeficiency virus (HIV)-infected patients. METHODS: The HIV/AIDS Drug Treatment Programme at the British Columbia Centre for Excellence in HIV/AIDS distributes all ART in this Canadian province. Eligible individuals were those whose first-ever ART included 2 nucleoside reverse transcriptase inhibitors and either a protease inhibitor or a nonnucleoside reverse transcriptase inhibitor and who had a documented positive result for HCV antibody testing. Outcomes were binary events (time to an increase of > or = 75 CD4 cells/mm3 or an increase of > or = 10% in the percentage of CD4 cells in the total T cell population [CD4 cell fraction]) and continuous repeated measures. Statistical analyses used parametric and nonparametric methods, including multivariate mixed-effects linear regression analysis and Cox proportional hazards analysis. RESULTS: Of 1186 eligible patients, 606 (51%) were positive and 580 (49%) were negative for HCV antibodies. HCV antibody-positive patients were slower to have an absolute (P<.001) and a fraction (P = .02) CD4 cell event. In adjusted Cox proportional hazards analysis (controlling for age, sex, baseline absolute CD4 cell count, baseline pVL, type of ART initiated, AIDS diagnosis at baseline, adherence to ART regimen, and number of CD4 cell measurements), HCV antibody-positive patients were less likely to have an absolute CD4 cell event (adjusted hazard ratio [AHR], 0.84 [95% confidence interval [CI], 0.72-0.98]) and somewhat less likely to have a CD4 cell fraction event (AHR, 0.89 [95% CI, 0.70-1.14]) than HCV antibody-negative patients. In multivariate mixed-effects linear regression analysis, HCV antibody-negative patients had increases of an average of 75 cells in the absolute CD4 cell count and 4.4% in the CD4 cell fraction, compared with 20 cells and 1.1% in HCV antibody-positive patients, during the first 48 weeks of ART, after adjustment for time-updated pVL, number of CD4 cell measurements, and other factors. CONCLUSION: HCV antibody-positive HIV-infected patients may have an altered immunologic response to ART.
Resumo:
BACKGROUND: Contagious bovine pleuropneumonia (CBPP) caused by Mycoplasma mycoides subsp. mycoides small-colony type (SC) is among the most serious threats for livestock producers in Africa. Glycerol metabolism-associated H2O2 production seems to play a crucial role in virulence of this mycoplasma. A wide number of attenuated strains of M. mycoides subsp. mycoides SC are currently used in Africa as live vaccines. Glycerol metabolism is not affected in these vaccine strains and therefore it does not seem to be the determinant of their attenuation. A non-synonymous single nucleotide polymorphism (SNP) in the bgl gene coding for the 6-phospho-beta-glucosidase (Bgl) has been described recently. The SNP differentiates virulent African strains isolated from outbreaks with severe CBPP, which express the Bgl isoform Val204, from strains to be considered less virulent isolated from CBPP outbreaks with low mortality and vaccine strains, which express the Bgl isoform Ala204. RESULTS: Strains of M. mycoides subsp. mycoides SC considered virulent and possessing the Bgl isoform Val204, but not strains with the Bgl isoform Ala204, do trigger elevated levels of damage to embryonic bovine lung (EBL) cells upon incubation with the disaccharides (i.e., beta-D-glucosides) sucrose and lactose. However, strains expressing the Bgl isoform Val204 show a lower hydrolysing activity on the chromogenic substrate p-nitrophenyl-beta-D-glucopyranoside (pNPbG) when compared to strains that possess the Bgl isoform Ala204. Defective activity of Bgl in M. mycoides subsp. mycoides SC does not lead to H2O2 production. Rather, the viability during addition of beta-D-glucosides in medium-free buffers is higher for strains harbouring the Bgl isoform Val204 than for those with the isoform Ala204. CONCLUSION: Our results indicate that the studied SNP in the bgl gene is one possible cause of the difference in bacterial virulence among strains of M. mycoides subsp. mycoides SC. Bgl does not act as a direct virulence factor, but strains possessing the Bgl isoform Val204 with low hydrolysing activity are more prone to survive in environments that contain high levels of beta-D-glucosides, thus contributing in some extent to mycoplasmaemia.
Resumo:
BACKGROUND: H1 antihistamines increase safety during allergen-specific immunotherapy and might influence the outcome because of immunoregulatory effects. OBJECTIVE: We sought to analyze the influence of 5 mg of levocetirizine (LC) on the safety, efficacy, and immunologic effects of ultrarush honeybee venom immunotherapy (BVIT). METHOD: In a double-blind, placebo-controlled study 54 patients with honeybee venom allergy received LC or placebo from 2 days before BVIT to day 21. Side effects during dose increase and systemic allergic reactions (SARs) to a sting challenge after 120 days were analyzed. Allergen-specific immune response was investigated in skin, serum, and allergen-stimulated T-cell cultures. RESULTS: Side effects were significantly more frequent in patients receiving placebo. Four patients receiving placebo dropped out because of side effects. SARs to the sting challenge occurred in 8 patients (6 in the LC group and 2 in the placebo group). Seven SARs were only cutaneous, and 1 in the placebo group was also respiratory. Difference of SARs caused by the sting challenge was insignificant. Specific IgG levels increased significantly in both groups. Major allergen phospholipase A(2)-stimulated T cells from both groups showed a slightly decreased proliferation. The decrease in IFN-gamma and IL-13 levels with placebo was not prominent with LC, whereas IL-10 levels showed a significant increase in the LC group only. Decreased histamine receptor (HR)1/HR2 ratio in allergen-specific T cells on day 21 in the placebo group was prevented by LC. CONCLUSIONS: LC reduces side effects during dose increase without influencing the efficacy of BVIT. LC modulates the natural course of allergen-specific immune response and affects the expression of HRs and cytokine production by allergen-specific T cells.