21 resultados para Cytokine-mediated Osteoclastogenesis

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The exact molecular mechanisms leading to delayed apoptosis, a phenomenon frequently observed in eosinophil inflammatory responses, remain largely unknown. Here, we show that cultured eosinophils purified from blood of hypereosinophilic syndrome (HES) patients exhibit delayed spontaneous death and relative resistance towards ceramide- but not CD95-mediated death. The subsequent investigation of members of the inhibitor of apoptosis (IAP) family revealed that HES but not normal eosinophils expressed high levels of cellular IAP-2 (cIAP-2) and survivin. The eosinophil hematopoietins IL-3, IL-5, and GM-CSF increased the expression of cIAP-2 and survivin in normal eosinophils in vitro. In the blood of HES patients, we observed increased concentrations of IL-3 and/or IL-5, suggesting that these cytokines are, at least partially, responsible for the elevated levels of cIAP-2 and survivin in the eosinophils of these patients. Utilizing a cell-free system in which caspase-3 was activated in eosinophil cytosolic extracts by addition of cytochrome c and immunodepletion of cIAP-2 or survivin resulted in accelerated caspase activation. These data suggest that some members of the IAP family including survivin are regulated by survival cytokines and inhibit the caspase cascade in HES eosinophils. The cytokine-dependent mechanism of delayed eosinophil apoptosis described here may also apply to other eosinophilic diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Under inflammatory conditions, neutrophil apoptosis is delayed due to survival-factor exposure, a mechanism that prevents the resolution of inflammation. One important proinflammatory cytokine involved in the regulation of neutrophil survival/activation is granulocyte-macrophage colony-stimulating factor (GM-CSF). Although GM-CSF mediates antiapoptotic effects in neutrophils, it does not prevent apoptosis, and the survival effect is both time dependent and limited. Here, we identified the proapoptotic Bcl-2 family member Bim as an important lifespan limiting molecule in neutrophils, particularly under conditions of survival factor exposure. Strikingly, GM-CSF induced Bim expression in both human and mouse neutrophils that was blocked by pharmacological inhibition of phosphatidylinositol-3 kinase (PI3K). Increased Bim expression was also seen in human immature bone marrow neutrophils as well as in blood neutrophils from septic shock patients; both cell populations are known to be exposed to GM-CSF under in vivo conditions. The functional role of Bim was investigated using Bim-deficient mouse neutrophils in the presence and absence of the survival cytokines interleukin (IL)-3 and GM-CSF. Lack of Bim expression resulted in a much higher efficacy of the survival cytokines to block neutrophil apoptosis. Taken together, these data demonstrate a functional role for Bim in the regulation of neutrophil apoptosis and suggest that GM-CSF and other neutrophil hematopoietins initiate a proapoptotic counterregulation that involves upregulation of Bim.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Eosinophilic inflammatory responses occur in association with multiple disorders. Although the initial cause and the affected organs vary among the different eosinophilic disorders, there are only 2 major pathways that mediate eosinophilia: (1) cytokine-mediated increased differentiation and survival of eosinophils (extrinsic eosinophilic disorders), and (2) mutation-mediated clonal expansion of eosinophils (intrinsic eosinophilic disorders). Independent from the original trigger, the most common cause of eosinophilia is the increased generation of IL-5-producing T cells. In some cases, tumor cells are the source of eosinophil hematopoietins. The intrinsic eosinophilic disorders are characterized by mutations in pluripotent or multipotent hematopoietic stem cells leading to chronic myeloid leukemias with eosinophils as part of the clone. Here, we propose a new classification of eosinophilic disorders on the basis of these obvious pathogenic differences between the 2 groups of patients. We then discuss many known eosinophilic disorders, which can be further subdivided by differences in T-cell activation mechanisms, origin of the cytokine-producing tumor cell, or potency of the mutated stem cell. Interestingly, many subgroups of patients originally thought to have the idiopathic hypereosinophilic syndrome can be integrated in this classification.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta), produced by endotoxin-activated Kupffer cells, play a key role in the pathogenesis of alcoholic liver cirrhosis (ALC). Alleles TNFA -238A, IL1B -31T and variant IL1RN*2 of repeat polymorphism in the gene encoding the IL-1 receptor antagonist increase production of TNF-alpha and IL-1beta, respectively. Alleles CD14 -159T, TLR4 c.896G and TLR4 c.1196T modify activation of Kupffer cells by endotoxin. We confirmed the published associations between these common variants and genetic predisposition to ALC by means of a large case-control association study conducted on two Central European populations. METHODS: The study population comprised a Czech sample of 198 ALC patients and 370 controls (MONICA project), and a German sample of 173 ALC patients and 331 controls (KORA-Augsburg), and 109 heavy drinkers without liver disease. RESULTS: Single locus analysis revealed no significant difference between patients and controls in all tested loci. Diplotype [IL1RN 2/ 2; IL1B -31T+] was associated with increased risk of ALC in the pilot study, but not in the validation samples. CONCLUSIONS: Although cytokine mediated immune reactions play a role in the pathogenesis of ALC, hereditary susceptibility caused by variants in the corresponding genes is low in Central European populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inflammatory cytokines such as tumor necrosis factor-alpha (TNFα) are potent stimulators of osteoclast formation and bone resorption and are frequently associated with pathologic bone metabolism. The cytokine exerts specific effects on its target cells and constitutes a part of the cellular microenvironment. Previously, TNFα was demonstrated to inhibit the development of osteoclasts in vitro via an osteoblast-mediated pathway. In the present study, the molecular mechanisms of the inhibition of osteoclastogenesis were investigated in co-cultures of osteoblasts and bone marrow cells (BMC) and in cultures of macrophage-colony stimulating factor (M-CSF) dependent, non-adherent osteoclast progenitor cells (OPC) grown with M-CSF and receptor activator of NF-κB ligand (RANKL). Granulocyte-macrophage colony stimulating factor (GM-CSF), a known inhibitor of osteoclastogenesis was found to be induced in osteoblasts treated with TNFα and the secreted protein accumulated in the supernatant. Dexamethasone (Dex), an anti-inflammatory steroid, caused a decrease in GM-CSF expression, leading to partial recovery of osteoclast formation. Flow cytometry analysis revealed that in cultures of OPC, supplemented with 10% conditioned medium (CM) from osteoblasts treated with TNFα/1,25(OH)(2)D(3), expression of RANK and CD11c was suppressed. The decrease in RANK expression may be explained by the finding, that GM-CSF and the CM from wt osteoblasts were found to suppress the expression of c-Fos, Fra-1, and Nfatc-1. The failure of OPC to develop into CD11c(+) dendritic cells suggests that cell development is not deviated to an alternative differentiation pathway, but rather, that the monocytes are maintained in an undifferentiated, F4/80(+), state. The data further implies possible interactions among inflammatory cytokines. GM-CSF induced by TNFα acts on early hematopoietic precursors, inhibiting osteoclastogenesis while acting as the growth factor for M-CSF independent inflammatory macrophages. These in turn may condition a microenvironment enhancing osteoclast differentiation and bone resorption upon migration of the OPC from circulation to the bone/bone marrow compartment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cannabinoid CB(2) receptor is known to modulate osteoclast function by poorly understood mechanisms. Here, we report that the natural biphenyl neolignan 4'-O-methylhonokiol (MH) is a CB(2) receptor-selective antiosteoclastogenic lead structure (K(i) < 50 nM). Intriguingly, MH triggers a simultaneous G(i) inverse agonist response and a strong CB(2) receptor-dependent increase in intracellular calcium. The most active inverse agonists from a library of MH derivatives inhibited osteoclastogenesis in RANK ligand-stimulated RAW264.7 cells and primary human macrophages. Moreover, these ligands potently inhibited the osteoclastogenic action of endocannabinoids. Our data show that CB(2) receptor-mediated cAMP formation, but not intracellular calcium, is crucially involved in the regulation of osteoclastogenesis, primarily by inhibiting macrophage chemotaxis and TNF-α expression. MH is an easily accessible CB(2) receptor-selective scaffold that exhibits a novel type of functional heterogeneity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diagnosis of drug hypersensitivity relies on history, skin tests, in vitro tests and provocation tests. In vitro tests are of great interest, due to possible reduction of drug provocation tests. In this review we focus on best investigated in vitro techniques for the diagnosis of T cell-mediated drug hypersensitivity reactions. As drug hypersensitivity relies on different pathomechanisms and as a single diagnostic test usually does not cover all possible reactions, it is advisable to combine different tests to increase the overall sensitivity. Recently, proliferation-based assays have been supplemented by a panel of novel in vitro tests including analysis of cytotoxic potential of effector cells (granzyme B, granulysin, CD107a), evaluation of cytokine secretion (IL-2, IL-5, IL-13, and IFN-γ) and up-regulation of cell surface activation markers (CD69). We discuss the latest findings and readout systems to identify causative drugs by detecting functional and phenotypic markers of drug-reacting cells, and their ability to enable a more conclusive diagnosis of drug allergy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Horses are particularly prone to allergic and autoimmune diseases, but little information about equine regulatory T cells (Treg) is currently available. The aim of this study therefore was to investigate the existence of CD4(+) Treg cells in horses, determine their suppressive function as well as their mechanism of action. Freshly isolated peripheral blood mononuclear cells (PBMC) from healthy horses were examined for CD4, CD25 and forkhead box P3 (FoxP3) expression. We show that equine FoxP3 is expressed constitutively by a population of CD4(+) CD25(+) T cells, mainly in the CD4(+) CD25(high) subpopulation. Proliferation of CD4(+) CD25(-) sorted cells stimulated with irradiated allogenic PBMC was significantly suppressed in co-culture with CD4(+) CD25(high) sorted cells in a dose-dependent manner. The mechanism of suppression by the CD4(+) CD25(high) cell population is mediated by close contact as well as interleukin (IL)-10 and transforming growth factor-beta1 (TGF-beta1) and probably other factors. In addition, we studied the in vitro induction of CD4(+) Treg and their characteristics compared to those of freshly isolated CD4(+) Treg cells. Upon stimulation with a combination of concanavalin A, TGF-beta1 and IL-2, CD4(+) CD25(+) T cells which express FoxP3 and have suppressive capability were induced from CD4(+) CD25(-) cells. The induced CD4(+) CD25(high) express higher levels of IL-10 and TGF-beta1 mRNA compared to the freshly isolated ones. Thus, in horses as in man, the circulating CD4(+) CD25(high) subpopulation contains natural Treg cells and functional Treg can be induced in vitro upon appropriate stimulation. Our study provides the first evidence of the regulatory function of CD4(+) CD25(+) cells in horses and offers insights into ex vivo manipulation of Treg cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Equine insect bite hypersensitivity (IBH) is a seasonally recurrent, pruritic skin disorder caused by an IgE-mediated reaction to salivary proteins of biting flies, predominantly of the genus Culicoides. The aim of this study was to define T cell subsets and cytokine profile in the skin of IBH-affected Icelandic horses with particular focus on the balance between T helper (Th) 1, Th2 and T regulatory (Treg) cells. Distribution and number of CD4+, CD8+ and Forkhead box P3 (FoxP3)+ T cells were characterized by immunohistochemical staining in lesional and non-lesional skin of moderately and severely IBH-affected horses (n=14) and in the skin of healthy control horses (n=10). Using real-time quantitative reverse transcription-polymerase chain reaction, mRNA expression levels of Th2 cytokines (Interleukin (IL)-4, IL-5, IL-13), Th1 cytokines (Interferon-gamma), regulatory cytokines (Transforming Growth Factor beta1, IL-10) and the Treg transcription factor FoxP3 were measured in skin and blood samples. Furthermore, Culicoides nubeculosus specific serum IgE levels were assessed. Lesions of IBH-affected horses contained significantly higher numbers of CD4+ cells than skin of healthy control horses. Furthermore, the total number of T cells (CD4+ and CD8+) was significantly increased in lesional compared to non-lesional skin and there was a tendency (p=0.07) for higher numbers of CD4+ cells in lesional compared to non-lesional skin. While the number of FoxP3+ T cells did not differ significantly between the groups, the ratio of Foxp3 to CD4+ cells was significantly lower in lesions of severely IBH-affected horses than in moderately affected or control horses. Interestingly, differences in FoxP3 expression were more striking at the mRNA level. FoxP3 mRNA levels were significantly reduced in lesional skin, compared both to non-lesional and to healthy skin and were also significantly lower in non-lesional compared to healthy skin. Expression levels of IL-13, but not IL-4 or IL-5, were significantly elevated in lesional and non-lesional skin of IBH-affected horses. IL-10 levels were lower in lesional compared to non-lesional skin (p=0.06) and also lower (p=0.06) in the blood of IBH-affected than of healthy horses. No significant changes were observed regarding blood expression levels of Th1 and Th2 cytokines or FoxP3. Finally, IBH-affected horses had significantly higher Culicoides nubeculosus specific serum IgE levels than control horses. The presented data suggest that an imbalance between Th2 and Treg cells is a characteristic feature in IBH. Treatment strategies for IBH should thus aim at restoring the balance between Th2 and Treg cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insect bite hypersensitivity (IBH) is an IgE-mediated dermatitis of horses caused by bites of Culicoides spp. IBH does not occur in Iceland where Culicoides are absent. However, following importation into continental Europe where Culicoides are present, >or=50% of Icelandic horses (1st generation) develop IBH but

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The antiviral potency of the cytokine IFN-α has been long appreciated but remains poorly understood. A number of studies have suggested that induction of the apolipoprotein B mRNA editing enzyme, catalytic polypeptide 3 (APOBEC3) and bone marrow stromal cell antigen 2 (BST-2/tetherin/CD317) retroviral restriction factors underlies the IFN-α-mediated suppression of HIV-1 replication in vitro. We sought to characterize the as-yet-undefined relationship between IFN-α treatment, retroviral restriction factors, and HIV-1 in vivo. APOBEC3G, APOBEC3F, and BST-2 expression levels were measured in HIV/hepatitis C virus (HCV)-coinfected, antiretroviral therapy-naïve individuals before, during, and after pegylated IFN-α/ribavirin (IFN-α/riba) combination therapy. IFN-α/riba therapy decreased HIV-1 viral load by -0.921 (±0.858) log(10) copies/mL in HIV/HCV-coinfected patients. APOBEC3G/3F and BST-2 mRNA expression was significantly elevated during IFN-α/riba treatment in patient-derived CD4+ T cells (P < 0.04 and P < 0.008, paired Wilcoxon), and extent of BST-2 induction was correlated with reduction in HIV-1 viral load during treatment (P < 0.05, Pearson's r). APOBEC3 induction during treatment was correlated with degree of viral hypermutation (P < 0.03, Spearman's ρ), and evolution of the HIV-1 accessory protein viral protein U (Vpu) during IFN-α/riba treatment was suggestive of increased BST-2-mediated selection pressure. These data suggest that host restriction factors play a critical role in the antiretroviral capacity of IFN-α in vivo, and warrant investigation into therapeutic strategies that specifically enhance the expression of these intrinsic immune factors in HIV-1-infected individuals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study we examined the potential inhibition by interferon-gamma (IFN gamma) of the early stages of low density lipoprotein (LDL) oxidation mediated by human peripheral blood mononuclear cells (PBMC) and monocyte-derived macrophages (MDM) in Ham's F-10 medium supplemented with physiological amounts of L-tryptophan (Trp). We assessed LDL oxidation by measuring the consumption of LDL's major antioxidant (i.e., alpha-tocopherol) and targets for oxidation (cholesteryllinoleate and cholesterylarachidonate), together with the accumulation of cholesterylester hydroperoxides and the increase in relative electrophoretic mobility of the lipoprotein particle. Exposure of PBMC or MDM to IFN gamma induced the degradation of extracellular Trp with concomitant accumulation of kynurenine, anthranilic and 3-hydroxyanthranilic acid (3HAA) in the culture medium. Formation of 3HAA, but neither Trp degradation nor formation of kynurenine and anthranilic acid, was inhibited by low amounts of diphenylene iodonium (DPI) in a concentration-dependent manner. In contrast to oxidative Trp metabolism, exposure of human PBMC or MDM to IFN gamma failed to induce degradation of arginine, and nitrite was not detected in the cell supernatant, indicating that nitric oxide synthase was not induced under these conditions. Incubation of LDL in Trp-supplemented F-10 medium resulted in a time-dependent oxidation of the lipoprotein that was accelerated in the presence of PBMC or MDM but inhibited strongly in the presence of both cells and IFN gamma, i.e., when Trp degradation and formation of 3HAA were induced. In contrast, when IFN gamma was added to PBMC or MDM in F-10 medium that was virtually devoid of Trp, inhibition of cell-accelerated LDL oxidation was not observed. Exogenous 3HAA added to PBMC or purified monocytes in the absence of IFN gamma also strongly and in a concentration-dependent manner inhibited LDL oxidation. Selective inhibition of IFN gamma-induced formation of 3HAA by DPI caused reversion of the inhibitory action of this cytokine on both PBMC- and MDM-mediated LDL oxidation. These results show that IFN gamma treatment of human PBMC or MDM in vitro attenuates the extent of LDL oxidation caused by these cells, and indicate that Trp degradation with formation of 3HAA is a major contributing factor to this inhibitory activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liver fibrosis is characterized by high expression of the key profibrogenic cytokine transforming growth factor (TGF)-beta and the natural tissue inhibitor of metalloproteinases (TIMP)-1, leading to substantial accumulation of extracellular matrix. Liver fibrosis originates from various chronic liver diseases, such as chronic viral hepatitis that, to date, cannot be treated sufficiently. Thus, novel therapeutics, for example, those derived from Oriental medicine, have gained growing attention. In Korea, extracts prepared from Lindera obtusiloba are used for centuries for treatment of inflammation, improvement of blood circulation and prevention of liver damage, but experimental evidence of their efficacy is lacking. We studied direct antifibrotic effects in activated hepatic stellate cells (HSCs), the main target cell in the fibrotic liver. L. obtusiloba extract (135 mug/ml) reduced the de novo DNA synthesis of activated rat and human HSCs by about 90%, which was not accompanied by cytotoxicity of HSC, primary hepatocytes and HepG2 cells, pointing to induction of cellular quiescence. As determined by quantitative polymerase chain reaction, simultaneous treatment of HSCs with TGF-beta and L. obtusiloba extract resulted in reduction of TIMP-1 expression to baseline level, disruption of the autocrine loop of TGF-beta autoinduction and increased expression of fibrolytic matrix metalloproteinase (MMP)-3. In addition, L. obtusiloba reduced gelatinolytic activity of HSC by interfering with profibrogenic MMP-2 activity. Since L. obtusiloba extract prevented intracellular oxidative stress experimentally induced by tert-butylhydroperoxide, we concluded that the direct antifibrotic effect of L. obtusiloba extract might be mediated by antioxidant activity. Thus, L. obtusiloba, traditionally used in Oriental medicine, may complement treatment of chronic liver disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Organotins are highly toxic and widely distributed environmental chemicals. Dibutyltin (DBT) is used as stabilizer in the production of polyvinyl chloride plastics, and it is also the major metabolite formed from tributyltin (TBT) in vivo. DBT is immunotoxic, however, the responsible targets remain to be defined. Due to the importance of glucocorticoids in immune-modulation, we investigated whether DBT could interfere with glucocorticoid receptor (GR) function. METHODOLOGY: We used HEK-293 cells transiently transfected with human GR as well as rat H4IIE hepatoma cells and native human macrophages and human THP-1 macrophages expressing endogenous receptor to study organotin effects on GR function. Docking of organotins was used to investigate the binding mechanism. PRINCIPAL FINDINGS: We found that nanomolar concentrations of DBT, but not other organotins tested, inhibit ligand binding to GR and its transcriptional activity. Docking analysis indicated that DBT inhibits GR activation allosterically by inserting into a site close to the steroid-binding pocket, which disrupts a key interaction between the A-ring of the glucocorticoid and the GR. DBT inhibited glucocorticoid-induced expression of phosphoenolpyruvate carboxykinase (PEPCK) and tyrosine-aminotransferase (TAT) and abolished the glucocorticoid-mediated transrepression of TNF-alpha-induced NF-kappaB activity. Moreover, DBT abrogated the glucocorticoid-mediated suppression of interleukin-6 (IL-6) and TNF-alpha production in lipopolysaccharide (LPS)-stimulated native human macrophages and human THP-1 macrophages. CONCLUSIONS: DBT inhibits ligand binding to GR and subsequent activation of the receptor. By blocking GR activation, DBT may disturb metabolic functions and modulation of the immune system, providing an explanation for some of the toxic effects of this organotin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mast cell degranulation is pivotal to allergic diseases; investigating novel pathways triggering mast cell degranulation would undoubtedly have important therapeutic potential. FcepsilonRI-mediated degranulation has contradictorily been shown to require SphK1 or SphK2, depending on the reports. We investigated the in vitro and in vivo specific role(s) of SphK1 and SphK2 in FcepsilonRI-mediated responses, using specific small interfering RNA-gene silencing. The small interfering RNA-knockdown of SphK1 in mast cells inhibited several signaling mechanisms and effector functions, triggered by FcepsilonRI stimulation including: Ca(2+) signals, NFkappaB activation, degranulation, cytokine/chemokine, and eicosanoid production, whereas silencing SphK2 had no effect at all. Moreover, silencing SPHK1 in vivo, in different strains of mice, strongly inhibited mast cell-mediated anaphylaxis, including inhibition of vascular permeability, tissue mast cell degranulation, changes in temperature, and serum histamine and cytokine levels, whereas silencing SPHK2 had no effect and the mice developed anaphylaxis. Our data differ from a recent report using SPHK1(-/-) and SPHK2(-/-) mice, which showed that SphK2 was required for FcepsilonRI-mediated mast cell responses. We performed experiments in mast cells derived from SPHK1(-/-) and SPHK2(-/-) mice and show that the calcium response and degranulation, triggered by FcepsilonRI-cross-linking, is not different from that triggered in wild-type cells. Moreover, IgE-mediated anaphylaxis in the knockout mice showed similar levels in temperature changes and serum histamine to that from wild-type mice, indicating that there was no protection from anaphylaxis for either knockout mice. Thus, our data strongly suggest a previously unrecognized compensatory mechanism in the knockout mice, and establishes a role for SphK1 in IgE-mediated mast cell responses.