49 resultados para Cyril, Saint, Patriarch of Alexandria, ca. 370-444.

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of mathematical models for predicting growth and final height outcome have been proposed to enable the clinician to 'individualize' growth-promoting treatment. However, despite optimizing these models, many patients with isolated growth hormone deficiency (IGHD) do not reach their target height. The aim of this study was to analyse the impact of polymorphic genotypes [CA repeat promoter polymorphism of insulin-like growth factor-I (IGF-I) and the -202 A/C promoter polymorphism of IGF-Binding Protein-3 (IGFBP-3)] on variable growth factors as well as final height in severe IGHD following GH treatment. DESIGN, PATIENTS AND CONTROLS: One hundred seventy eight (IGF-I) and 167 (IGFBP-3) subjects with severe growth retardation because of IGHD were studied. In addition, the various genotypes were also studied in a healthy control group of 211 subjects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tropical montane forests of the E Andean cordillera in Ecuador receive episodic Sahara-dust inputs particularly increasing Ca deposition. We added CaCl2 to isolate the effect of Ca deposition by Sahara dust to tropical montane forest from the simultaneously occurring pH effect. We examined components of the Ca cycle at four control plots and four plots with added Ca (2 × 5 kg ha–1 Ca annually as CaCl2) in a random arrangement. Between August 2007 and December 2009 (four applications of Ca), we determined Ca concentrations and fluxes in litter leachate, mineral soil solution (0.15 and 0.30 m depths), throughfall, and fine litterfall and Al concentrations and speciation in soil solutions. After 1 y of Ca addition, we assessed fine-root biomass, leaf area, and tree growth. Only < 3% of the applied Ca leached below the acid organic layer (pH 3.5–4.8). The added CaCl2 did not change electrical conductivity in the root zone after 2 y. In the second year of fertilization, Ca retention in the canopy of the Ca treatment tended to decrease relative to the control. After 2 y, 21% of the applied Ca was recycled to soil with throughfall and litterfall. One year after the first Ca addition, fine-root biomass had decreased significantly. Decreasing fine-root biomass might be attributed to a direct or an indirect beneficial effect of Ca on the soil decomposer community. Because of almost complete association of Al with dissolved organic matter and high free Ca2+ : Al3+ activity ratios in solution of all plots, Al toxicity was unlikely. We conclude that the added Ca was retained in the system and had beneficial effects on some plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents static measurements of the Ca isotopic composition of standard reference materials SRM 915 a/b on a Triton Plus™ thermal ionization mass spectrometer with a specially developed Faraday cup array allowing simultaneous measurement of 40Ca and 48Ca. The total amount of Ca in all analyses was kept < 1 µg. With this setup the measurement uncertainties were 0.06 ‰ for 40Ca/44Ca and 0.12 ‰ for 48Ca/40Ca. Measuring all isotopes simultaneously better allows to test the internal consistency of different Ca isotope abundances reported in the literature. The exponential law was observed to correct incompletely instrumental mass fractionation. An improved fractionation correction based on the exponential law is proposed. It changes the 40Ca/44Ca ratio of SRM 915a (corrected relative to 42Ca/44Ca = 0.31221; 48Ca/44Ca = 0.08871) from 47.1635 ± 0.0028 to 47.1649 ± 0.0047. The measurements of SRM 915b were performed with different analytical conditions (runs were prolonged till complete filament load depletion). Even if the 40Ca/44Ca ratio of SRM 915b, when corrected with the simple exponential law, appears different (47.1532 ± 0.0038) from that of SRM 915a, it becomes coincident (47.1613 ± 0.0028) when corrected with a second-order refinement. This supports the use of the improved exponential law to obtain internally consistent Ca isotope ratio for natural samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For Jewish-Hellenistic authors writing in Egypt, the Exodus story posed unique challenges. After all, to them Egypt was, as Philo of Alexandria states, their fatherland. How do these authors come to terms with the biblical story of liberation from Egyptian slavery and the longing for the promised land? In this chapter I am taking a close look at Philo’s detailed discussion of the Exodus and locate it within the larger context of Jewish-Hellenistic literature (Wisdom of Solomon, Ezekiel’s Exagoge). In Philo’s rewriting of the Exodus the destination of the journey is barely mentioned. Contrary to the biblical narrative, in the scene of the burning bush, as retold by Philo, God does not tell Moses where to go. Philo’s main concern is what happens in Egypt: both in biblical times and in his own days. The Exodus is nevertheless important to Philo: He reads the story allegorically as a journey from the land of the body to the realms of the mind. Such a symbolic reading permitted him to control the meaning of the Exodus and to stay, literally and figuratively, in Egypt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Representing the common endpoint of various cardiovascular disorders, heart failure (HF) shows a dramatically growing prevalence. As currently available therapeutic strategies are not capable of terminating the progress of the disease, HF is still associated with a poor clinical prognosis. Among the underlying molecular mechanisms, the loss of cardiomyocyte Ca(2+) cycling integrity plays a key role in the pathophysiological development and progression of the disease. The cardiomyocyte EF-hand Ca(2+) sensor protein S100A1 emerged as a regulator both of sarcoplasmic reticulum (SR), sarcomere and mitochondrial function implicating a significant role in cardiac physiology and dysfunction. In this review, we aim to recapitulate the translation of S100A1-based investigation from first clinical observations over basic research experiments back to a near-clinical setting on the verge of clinical trials today. We also address needs for further developments towards "second-generation" gene therapy and discuss the therapeutic potential of S100A1 gene therapy for HF as a promising novel strategy for future cardiologists. This article is part of a Special Section entitled "Special Section: Cardiovascular Gene Therapy".

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Connexin45 (Cx45) hemichannels (HCs) open in the absence of Ca(2+) and close in its presence. To elucidate the underlying mechanisms, we examined the role of extra- and intracellular Ca(2+) on the electrical properties of HCs. Experiments were performed on HeLa cells expressing Cx45 using electrical (voltage clamp) and optical (Ca(2+) imaging) methods. HCs exhibit a time- and voltage-dependent current (I(hc)), activating with depolarization and inactivating with hyperpolarization. Elevation of [Ca(2+)](o) from 20 nM to 2 μM reversibly decreases I(hc), decelerates its rate of activation, and accelerates its deactivation. Our data suggest that [Ca(2+)](o) modifies the channel properties by adhering to anionic sites in the channel lumen and/or its outer vestibule. In this way, it blocks the channel pore and reversibly lowers I(hc) and modifies its kinetics. Rapid lowering of [Ca(2+)](o) from 2 mM to 20 nM, achieved early during a depolarizing pulse, led to an outward I(hc) that developed with virtually no delay and grew exponentially in time paralleled by unaffected [Ca(2+)](i). A step increase of [Ca(2+)](i) evoked by photorelease of Ca(2+) early during a depolarizing pulse led to a transient decrease of I(hc) superimposed on a growing outward I(hc); a step decrease of [Ca(2+)](i) elicited by photoactivation of a Ca(2+) scavenger provoked a transient increase in I(hc). Hence, it is tempting to assume that Ca(2+) exerts a direct effect on Cx45 hemichannels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Ca(2+) content of the sarcoplasmic reticulum (SR) of cardiac myocytes is thought to play a role in the regulation and termination of SR Ca(2+) release through the ryanodine receptors (RyRs). Experimentally altering the amount of Ca(2+) within the SR with the membrane-permeant low affinity Ca(2+) chelator TPEN could improve our understanding of the mechanism(s) by which SR Ca(2+) content and SR Ca(2+) depletion can influence Ca(2+) release sensitivity and termination. We applied laser-scanning confocal microscopy to examine SR Ca(2+) release in freshly isolated ventricular myocytes loaded with fluo-3, while simultaneously recording membrane currents using the whole-cell patch-clamp technique. Following application of TPEN, local spontaneous Ca(2+) releases increased in frequency and developed into cell-wide Ca(2+) waves. SR Ca(2+) load after TPEN application was found to be reduced to about 60% of control. Isolated cardiac RyRs reconstituted into lipid bilayers exhibited a two-fold increase of their open probability. At the low concentration used (20-40muM), TPEN did not significantly inhibit the SR-Ca(2+)-ATPase in SR vesicles. These results indicate that TPEN, traditionally used as a low affinity Ca(2+) chelator in intracellular Ca(2+) stores, may also act directly on the RyRs inducing an increase in their open probability. This in turn results in an increased Ca(2+) leak from the SR leading to its Ca(2+) depletion. Lowering of SR Ca(2+) content may be a mechanism underlying the recently reported cardioprotective and antiarrhythmic features of TPEN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Ca(2+)-binding proteins parvalbumin (PV) and calbindin D-28k (CB) are key players in the intracellular Ca(2+)-buffering in specific cells including neurons and have profound effects on spatiotemporal aspects of Ca(2+) transients. The previously observed increase in mitochondrial volume density in fast-twitch muscle of PV-/- mice is viewed as a specific compensation mechanism to maintain Ca(2+) homeostasis. Since cerebellar Purkinje cells (PC) are characterized by high expression levels of the Ca(2+) buffers PV and CB, the question was raised, whether homeostatic mechanisms are induced in PC lacking these buffers. Mitochondrial volume density, i.e. relative mitochondrial mass was increased by 40% in the soma of PV-/- PC. Upregulation of mitochondrial volume density was not homogenous throughout the soma, but was selectively restricted to a peripheral region of 1.5 microm width underneath the plasma membrane. Accompanied was a decreased surface of subplasmalemmal smooth endoplasmic reticulum (sPL-sER) in a shell of 0.5 microm thickness underneath the plasma membrane. These alterations were specific for the absence of the "slow-onset" buffer PV, since in CB-/- mice neither changes in peripheral mitochondria nor in sPL-sER were observed. This implicates that the morphological alterations are aimed to specifically substitute the function of the slow buffer PV. We propose a novel concept that homeostatic mechanisms of components involved in Ca(2+) homeostasis do not always occur at the level of similar or closely related molecules. Rather the cell attempts to restore spatiotemporal aspects of Ca(2+) signals prevailing in the undisturbed (wildtype) situation by subtly fine tuning existing components involved in the regulation of Ca(2+) fluxes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the measurement, at 100 K, of the SIMS relative sensitivity factors (RSFs) of the main physiological cations Na+, K+, Mg2+, and Ca2+ in frozen-hydrated (F-H) ionic solutions. Freezing was performed by either plunge freezing or high-pressure freezing. We also report the measurement of the RSFs in flax fibers, which are a model for ions in the plant cell wall, and in F-H ionic samples, which are a model for ions in the vacuole. RSFs were determined under bombardment with neutral oxygen (FAB) for both the fibers and the F-H samples. We show that referencing to ice-characteristic secondary ions is of little value in determining RSFs and that referencing to K is preferable. The RSFs of Na relative to K and of Ca relative to Mg in F-H samples are similar to their respective values in fiber samples, whereas the RSFs of both Ca and Mg relative to K are lower in fibers than in F-H samples. Our data show that the physical factors important for the determination of the RSFs are not the same in F-H samples and in homogeneous matrixes. Our data show that it is possible to perform a SIMS relative quantification of the cations in frozen-hydrated samples with an accuracy on the order of 15%. Referencing to K permits the quantification of the ionic ratios, even when the absolute concentration of the referencing ion is unknown. This is essential for physiological studies of F-H biological samples.