2 resultados para CvL
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
OBJECTIVES: Treatment as prevention depends on retaining HIV-infected patients in care. We investigated the effect on HIV transmission of bringing patients lost to follow up (LTFU) back into care. DESIGN: Mathematical model. METHODS: Stochastic mathematical model of cohorts of 1000 HIV-infected patients on antiretroviral therapy (ART), based on data from two clinics in Lilongwe, Malawi. We calculated cohort viral load (CVL; sum of individual mean viral loads each year) and used a mathematical relationship between viral load and transmission probability to estimate the number of new HIV infections. We simulated four scenarios: 'no LTFU' (all patients stay in care); 'no tracing' (patients LTFU are not traced); 'immediate tracing' (after missed clinic appointment); and, 'delayed tracing' (after six months). RESULTS: About 440 of 1000 patients were LTFU over five years. CVL (million copies/ml per 1000 patients) were 3.7 (95% prediction interval [PrI] 2.9-4.9) for no LTFU, 8.6 (95% PrI 7.3-10.0) for no tracing, 7.7 (95% PrI 6.2-9.1) for immediate, and 8.0 (95% PrI 6.7-9.5) for delayed tracing. Comparing no LTFU with no tracing the number of new infections increased from 33 (95% PrI 29-38) to 54 (95% PrI 47-60) per 1000 patients. Immediate tracing prevented 3.6 (95% PrI -3.3-12.8) and delayed tracing 2.5 (95% PrI -5.8-11.1) new infections per 1000. Immediate tracing was more efficient than delayed tracing: 116 and to 142 tracing efforts, respectively, were needed to prevent one new infection. CONCLUSION: Tracing of patients LTFU enhances the preventive effect of ART, but the number of transmissions prevented is small.
Resumo:
OBJECTIVES Exploratory pilot study to determine the correlation between postmenopausal vulvovaginal symptoms and vaginal cytokine levels. METHODS Postmenopausal women (n = 34) not using menopausal hormone therapy and presenting with or without symptoms of vulvovaginal irritation were screened. Each participant underwent a vaginal examination and screening for vaginitis. A cervicovaginal lavage (CVL) with sterile saline and a peripheral blood sample were obtained. Main outcome measures were assessed by Luminex® X-map method on the Bio-Plex® platform. Main outcome measures were cervicovaginal and serum interleukin (IL)-4, IL-5, IL-10, IL-12, IL-13, TNF-α, GM-CSF, MIP-1-alpha and RANTES level. Cervicovaginal cytokines were adjusted to total protein concentration [pg/mcg protein]. RESULTS Twenty-six postmenopausal women were enrolled (symptomatic: n = 15; asymptomatic: n = 11). There were no significant differences between groups: age, age at menopause, vaginal pH and all CVL and serum cytokines (IL-4, IL-5, IL-10, IL-12, IL-13, TNF-α, GM-CSF, MIP-1-alpha and RANTES). GM-CSF was the most abundant vaginal cytokine (symptomatic: 146.5 ± 165.6 pg/mcg protein; asymptomatic: 146.0 ± 173.5 pg/mcg protein; p = 0.99). CONCLUSIONS Postmenopausal vulvovaginal symptoms did not correlate with vaginal inflammatory marker. There was no difference in serum or CVL cytokines between symptomatic and asymptomatic postmenopasual women. Vaginal symptoms after menopause are not related to the vaginal cytokine changes associated with loss of estrogen.