13 resultados para Curriculum change - China

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article describes the indigenous knowledge (IK) that agro-pastoralists in larger Makueni District, Kenya hold and how they use it to monitor, mitigate and adapt to drought. It examines ways of integrating IK into formal monitoring, how to enhance its value and acceptability. Data was collected through target interviews, group discussions and questionnaires covering 127 households in eight villages. Daily rainfall data from 1961–2003 were analysed. Results show that agro-pastoralists hold IK on indicators of rainfall variability; they believe in IK efficacy and they rely on them. Because agro-pastoralists consult additional sources, the authors interpret that IK forms a basic knowledge frame within which agro-pastoralists position and interpret meteorological forecasts. Only a few agro-pastoralists adapt their practices in anticipation of IK-based forecasts partly due to the conditioning of the actors to the high rainfall variability characteristic of the area and partly due to lack of resources. Non-drought factors such as poverty, inadequate resources and lack of preparedness expose agro-pastoralists to drought impacts and limit their adaptive capacity. These factors need to be understood and effectively addressed to increase agro-pastoralists’ decision options and the influence of IK-based forecasts on their decision-making patterns. The limited intergenerational transfer of IK currently threatens its existence in the longer term. One way to ensure its continued existence and use is to integrate IK into the education curriculum and to link IK with formal climate change research through the participation of the local people. However, further studies are necessary to address the reliability and validity of the identified IK indicators of climate variability and change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Like other mountain areas in the world, the Hindu Kush-Himalayan (HKH) region is particularly vulnerable to climate change. Ongoing climate change processes are projected to have a high impact on the HKH region, and accelerated warming has been reported in the Himalayas. These climate change impacts will be superimposed on a variety of other environmental and social stresses, adding to the complexity of the issues. The sustainable use of natural resources is crucial to the long-term stability of the fragile mountain ecosystems in the HKH and to sustain the socio-ecological resilience that forms the basis of sustainable livelihoods in the region. In order to be prepared for these challenges, it is important to take stock of previous research. The ‘People and Resource Dynamics Project’ (PARDYP), implemented by International Centre for Integrated Mountain Development (ICIMOD), provides a variety of participatory options for sustainable land management in the HKH region. The PARDYD project was a research for development project that operated in five middle mountain watersheds across the HKH – two in Nepal and one each in China, India, and Pakistan. The project ran from 1996 to 2006 and focused on addressing the marginalisation of mountain farmers, the use and availability of water, issues relating to land and forest degradation and declining soil fertility, the speed of regeneration of degraded land, and the ability of the natural environment to support the growing needs of the region’s increasing population. A key learning from the project was that the opinion of land users is crucial to the acceptance (and, therefore, successful application) of new technologies and approaches. A major challenge at the end of every project is to promote knowledge sharing and encourage the cross-fertilization of ideas (e.g., in the case of PARDYP, with other middle mountain inhabitants and practitioners in the region) and to share lessons learned with a wider audience. This paper will highlight how the PARDYP findings, including ways of addressing soil fertility and water scarcity, have been mainstreamed in the HKH region through capacity building (international, regional, and national training courses), networking, and the provision of backstopping services. In addition, in view of the challenges in watershed management in the HKH connected to environmental change, the lessons learned from the PARDYP are now being used by ICMOD to define and package climate change proof technology options to address climate change adaptation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Semi-arid ecosystems play an important role in regulating global climate with the fate of these ecosystems in the Anthropocene depending upon interactions among temperature, precipitation, and CO2. However, in cool-arid environments, precipitation is not the only limitation to forest productivity. Interactions between changes in precipitation and air temperature may enhance soil moisture stress while simultaneously extending growing season length, with unclear consequences for net carbon uptake. This study evaluates recent trends in productivity and phenology of Inner Asian forests (in Mongolia and Northern China) using satellite remote sensing, dendrochronology, and dynamic global vegetation model (DGVM) simulations to quantify the sensitivity of forest dynamics to decadal climate variability and trends. Trends in photosynthetically active radiation fraction (FPAR) between 1982 and 2010 show a greening of about 7% of the region in spring (March, April, May), and 3% of the area ‘browning’ during summertime (June, July, August). These satellite observations of FPAR are corroborated by trends in NPP simulated by the LPJ DGVM. Spring greening trends in FPAR are mainly explained by long-term trends in precipitation whereas summer browning trends are correlated with decreasing precipitation. Tree ring data from 25 sites confirm annual growth increments are mainly limited by summer precipitation (June, July, August) in Mongolia, and spring precipitation in northern China (March, April, May), with relatively weak prior-year lag effects. An ensemble of climate projections from the IPCC CMIP3 models indicates that warming temperatures (spring, summer) are expected to be associated with higher summer precipitation, which combined with CO2 causes large increases in NPP and possibly even greater forest cover in the Mongolian steppe. In the absence of a strong direct CO2 fertilization effect on plant growth (e.g., due to nutrient limitation), water stress or decreased carbon gain from higher autotrophic respiration results in decreased productivity and loss of forest cover. The fate of these semi-arid ecosystems thus appears to hinge upon the magnitude and subtleties of CO2 fertilization effects, for which experimental observations in arid systems are needed to test and refine vegetation models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extending phenological records into the past is essential for the understanding of past ecological change and evaluating the effects of climate change on ecosystems. A growing body of historical phenological information is now available for Europe, North America, and Asia. In East Asia, long-term phenological series are still relatively scarce. This study extracted plant phenological observations from old diaries in the period 1834–1962. A spring phenology index (SPI) for the modern period (1963–2009) was defined as the mean flowering time of three shrubs (first flowering of Amygdalus davidiana and Cercis chinensis, 50% of full flowering of Paeonia suffruticosa) according to the data availability. Applying calibrated transfer functions from the modern period to the historical data, we reconstructed a continuous SPI time series across eastern China from 1834 to 2009. In the recent 30 years, the SPI is 2.1–6.3 days earlier than during any other consecutive 30 year period before 1970. A moving linear trend analysis shows that the advancing trend of SPI over the past three decades reaches upward of 4.1 d/decade, which exceeds all previously observed trends in the past 30 year period. In addition, the SPI series correlates significantly with spring (February to April) temperatures in the study area, with an increase in spring temperature of 1°C inducing an earlier SPI by 3.1 days. These shifts of SPI provide important information regarding regional vegetation-climate relationships, and they are helpful to assess long term of climate change impacts on biophysical systems and biodiversity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The advocacy coalition framework (ACF) is one of the most frequently applied theories of the policy process. Most applications have been in Western Europe and North America. This article provides an overview of the ACF, summarizes existing applications outside of Western Europe and North America, and introduces the special issue that features applications of the ACF in the Philippines, China, India, and Kenya. This article concludes with an argument for the continued application of the ACF outside of Western Europe and North America and a research agenda for overcoming challenges in using the ACF in comparative public policy research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Existing evidence of plant phenological change to temperature increase demonstrates that the phenological responsiveness is greater at warmer locations and in early-season plant species. Explanations of these findings are scarce and not settled. Some studies suggest considering phenology as one functional trait within a plant's life history strategy. In this study, we adapt an existing phenological model to derive a generalized sensitivity in space (SpaceSens) model for calculating temperature sensitivity of spring plant phenophases across species and locations. The SpaceSens model have three parameters, including the temperature at the onset date of phenophases (Tp), base temperature threshold (Tb) and the length of period (L) used to calculate the mean temperature when performing regression analysis between phenology and temperature. A case study on first leaf date of 20 plant species from eastern China shows that the change of Tp and Tb among different species accounts for interspecific difference in temperature sensitivity. Moreover, lower Tp at lower latitude is the main reason why spring phenological responsiveness is greater there. These results suggest that spring phenophases of more responsive, early-season plants (especially in low latitude) will probably continue to diverge from the other late-season plants with temperatures warming in the future.