38 resultados para Current Catalan novel

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although diabetic retinopathy (DR) remains a leading cause of vision loss, the last decade has brought significant advances in the diagnosis and treatment of this common complication of diabetes mellitus. First, optical coherence tomography allows for noninvasive imaging of the retina, in particular, the macula, with very high resolution, thus facilitating the management of diabetic macular edema. In addition, recent advances in the understanding of the pathophysiology of DR, in particular, the key role of cytokines, such as vascular endothelial growth factor (VEGF), have led to the development of anti-VEGF antibodies for intraocular use. Anti-VEGF therapies have largely replaced laser photocoagulation for the treatment of diabetic macular edema. The benefit of intravitreal anti-VEGF in diabetic macular edema has been proven in numerous large randomized controlled trials. Moreover, a role of inflammation in DR has been recognized, and several mainly steroid-based, anti-inflammatory agents for intravitreal treatment have been shown to be effective. Despite these recent advances, strict systemic control of glycemia remains the cornerstone of the management of DR, significantly reducing ocular complications. This chapter will provide an overview of current and novel concepts of DR and will allude to promising novel therapeutic options for this sight-threatening disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The treatment of multiple myeloma has undergone significant changes in the recent past. The arrival of novel agents, especially thalidomide, bortezomib and lenalidomide, has expanded treatment options and patient outcomes are improving significantly. This article summarises the discussions of an expert meeting which was held to debate current treatment practices for multiple myeloma in Switzerland concerning the role of the novel agents and to provide recommendations for their use in different treatment stages based on currently available clinical data. Novel agent combinations for the treatment of newly diagnosed, as well as relapsed multiple myeloma are examined. In addition, the role of novel agents in patients with cytogenetic abnormalities and renal impairment, as well as the management of the most frequent side effects of the novel agents are discussed. The aim of this article is to assist in treatment decisions in daily clinical practice to achieve the best possible outcome for patients with multiple myeloma.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In cardiac muscle the amplitude of Ca(2+) transients can be increased by enhancing Ca(2+) influx. Among the processes leading to increased Ca(2+) influx, agonists of the L-type Ca(2+)-channel can play an important role. Known pharmacological Ca(2+)-channel agonists act on different binding sites on the channel protein, which may lead not only to enhanced peak currents, but also to distinct changes in other biophysical characteristics of the current. In this study, membrane currents were recorded with the patch-clamp technique in the whole-cell configuration in guinea pig isolated ventricular myocytes in combination with confocal fluorescence Ca(2+) imaging techniques and a variety of pharmacological tools. Testing a new positive inotropic steroid-like compound, we found that it increased the L-type Ca(2+)-current by 2.5-fold by shifting the voltage-dependence of activation by 20.2 mV towards negative potentials. The dose-response relationship revealed two vastly different affinities (EC(50(high-affinity))=4.5+/-1.7 nM, EC(50(low-affinity))=8.0+/-1.1 microM) exhibiting differential pharmacological interactions with three classes of Ca(2+)-current antagonists, suggesting more than one binding site on the channel protein. Therefore, we identified and characterized a novel positive inotropic compound (F90927) as a member of a new class of Ca(2+)-channel agonists exhibiting unique features, which set it apart from other presently known L-type Ca(2+)-channel agonists.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pulse-wave velocity (PWV) is considered as the gold-standard method to assess arterial stiffness, an independent predictor of cardiovascular morbidity and mortality. Current available devices that measure PWV need to be operated by skilled medical staff, thus, reducing the potential use of PWV in the ambulatory setting. In this paper, we present a new technique allowing continuous, unsupervised measurements of pulse transit times (PTT) in central arteries by means of a chest sensor. This technique relies on measuring the propagation time of pressure pulses from their genesis in the left ventricle to their later arrival at the cutaneous vasculature on the sternum. Combined thoracic impedance cardiography and phonocardiography are used to detect the opening of the aortic valve, from which a pre-ejection period (PEP) value is estimated. Multichannel reflective photoplethysmography at the sternum is used to detect the distal pulse-arrival time (PAT). A PTT value is then calculated as PTT = PAT - PEP. After optimizing the parameters of the chest PTT calculation algorithm on a nine-subject cohort, a prospective validation study involving 31 normo- and hypertensive subjects was performed. 1/chest PTT correlated very well with the COMPLIOR carotid to femoral PWV (r = 0.88, p < 10 (-9)). Finally, an empirical method to map chest PTT values onto chest PWV values is explored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cannabinoid CB(2) receptor is known to modulate osteoclast function by poorly understood mechanisms. Here, we report that the natural biphenyl neolignan 4'-O-methylhonokiol (MH) is a CB(2) receptor-selective antiosteoclastogenic lead structure (K(i) < 50 nM). Intriguingly, MH triggers a simultaneous G(i) inverse agonist response and a strong CB(2) receptor-dependent increase in intracellular calcium. The most active inverse agonists from a library of MH derivatives inhibited osteoclastogenesis in RANK ligand-stimulated RAW264.7 cells and primary human macrophages. Moreover, these ligands potently inhibited the osteoclastogenic action of endocannabinoids. Our data show that CB(2) receptor-mediated cAMP formation, but not intracellular calcium, is crucially involved in the regulation of osteoclastogenesis, primarily by inhibiting macrophage chemotaxis and TNF-α expression. MH is an easily accessible CB(2) receptor-selective scaffold that exhibits a novel type of functional heterogeneity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phosphatidylinositol 3-kinases (PI3Ks) are key molecules in the signal transduction pathways initiated by the binding of extracellular signals to their cell surface receptors. The PI3K family of enzymes comprises eight catalytic isoforms subdivided into three classes and control a variety of cellular processes including proliferation, growth, apoptosis, migration and metabolism. Deregulation of the PI3K pathway has been extensively investigated in connection to cancer, but is also involved in other commonly occurring diseases such as chronic inflammation, autoimmunity, allergy, atherosclerosis, cardiovascular and metabolic diseases. The fact that the PI3K pathway is deregulated in a large number of human diseases, and its importance for different cellular responses, makes it an attractive drug target. Pharmacological PI3K inhibitors have played a very important role in studying cellular responses involving these enzymes. Currently, a wide range of selective PI3K inhibitors have been tested in preclinical studies and some have entered clinical trials in oncology. However, due to the complexity of PI3K signaling pathways, developing an effective anti-cancer therapy may be difficult. The biggest challenge in curing cancer patients with various signaling pathway abnormalities is to target multiple components of different signal transduction pathways with mechanism-based combinatorial treatments. In this article we will give an overview of the complex role of PI3K isoforms in human diseases and discuss their potential as drug targets. In addition, we will describe the drugs currently used in clinical trials, as well as promising emerging candidates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trypanosomatids cause widespread disease in humans and animals. Treatment of many of these diseases is hampered by the lack of efficient and safe drugs. New strategies for drug development are therefore urgently needed. It has long been known that the single mitochondrion of trypanosomatids exhibits many unique features. Recently, the mitochondrial translation machinery of trypanosomatids has been the focus of several studies, which revealed interesting variations to the mammalian system. It is the aim of this article to review these unique features and to discuss them in the larger biological context. It is our opinion that some of these features represent promising novel targets for chemotherapeutic intervention that should be studied in more detail.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Development of novel implants in orthopaedic trauma surgery is based on limited datasets of cadaver trials or artificial bone models. A method has been developed whereby implants can be constructed in an evidence based method founded on a large anatomic database consisting of more than 2.000 datasets of bones extracted from CT scans. The aim of this study was the development and clinical application of an anatomically pre-contoured plate for the treatment of distal fibular fractures based on the anatomical database. 48 Caucasian and Asian bone models (left and right) from the database were used for the preliminary optimization process and validation of the fibula plate. The implant was constructed to fit bilaterally in a lateral position of the fibula. Then a biomechanical comparison of the designed implant to the current gold standard in the treatment of distal fibular fractures (locking 1/3 tubular plate) was conducted. Finally, a clinical surveillance study to evaluate the grade of implant fit achieved was performed. The results showed that with a virtual anatomic database it was possible to design a fibula plate with an optimized fit for a large proportion of the population. Biomechanical testing showed the novel fibula plate to be superior to 1/3 tubular plates in 4-point bending tests. The clinical application showed a very high degree of primary implant fit. Only in a small minority of cases further intra-operative implant bending was necessary. Therefore, the goal to develop an implant for the treatment of distal fibular fractures based on the evidence of a large anatomical database could be attained. Biomechanical testing showed good results regarding the stability and the clinical application confirmed the high grade of anatomical fit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here we report a novel steroid-like compound F90363, exhibiting positive inotropy in vivo and in vitro in various cardiac muscle preparations. F90363 is a racemic mixture composed of the stereoisomers (-)-F90926 and (+)-F90927. Only F90927 exerted positive inotropy, while F90926 induced a weak negative inotropy, but only at concentrations 10(3) times higher than F90927 and most likely resulting from an unspecific interaction. The rapid time course of the action of F90927 suggested a direct interaction with a cellular target rather than a genomic alteration. We could identify the L-type Ca2+ current I(Ca(L)) as a main target of F90927, while excluding other components of cardiac Ca2+ signalling as potential contributors. In addition, several other signaling pathways known to lead to positive inotropy (e.g. alpha- and beta-adrenergic stimulation, cAMP pathways) could be excluded as targets of F90927. However, vessel contraction and stiffening of the cardiac muscle at high doses (>30 microM, 0.36 mg kg(-1), respectively) prevent the use of F90927 as a candidate for drug development. Since the compound may still find valuable applications in research, the aim of the present study was to identify the cellular target and the mechanism of inotropy of F90927.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

STUDY DESIGN: Ex vivo in vitro study evaluating a novel intervertebral disc/endplate culture system. OBJECTIVES: To establish a whole-organ intervertebral disc culture model for the study of disc degeneration in vitro, including the characterization of basic cell and organ function. SUMMARY OF BACKGROUND DATA: With current in vivo models for the study of disc and endplate degeneration, it remains difficult to investigate the complex disc metabolism and signaling cascades. In contrast, more controlled but simplified in vitro systems using isolated cells or disc fragments are difficult to culture due to the unconstrained conditions, with often-observed cell death or cell dedifferentiation. Therefore, there is a demand for a controlled culture model with preserved cell function that offers the possibility to investigate disc and endplate pathologies in a structurally intact organ. METHODS: Naturally constrained intervertebral disc/endplate units from rabbits were cultured in multi-well plates. Cell viability, metabolic activity, matrix composition, and matrix gene expression profile were monitored using the Live/Dead cell viability test (Invitrogen, Basel, Switzerland), tetrazolium salt reduction (WST-8), proteoglycan and deoxyribonucleic acid quantification assays, and quantitative polymerase chain reaction. RESULTS: Viability and organ integrity were preserved for at least 4 weeks, while proteoglycan and deoxyribonucleic acid content decreased slightly, and matrix genes exhibited a degenerative profile with up-regulation of type I collagen and suppression of collagen type II and aggrecan genes. Additionally, cell metabolic activity was reduced to one third of the initial value. CONCLUSIONS: Naturally constrained intervertebral rabbit discs could be cultured for several weeks without losing cell viability. Structural integrity and matrix composition were retained. However, the organ responded to the artificial environment with a degenerative gene expression pattern and decreased metabolic rate. Therefore, the described system serves as a promising in vitro model to study disc degeneration in a whole organ.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Platelets have important roles in atherosclerosis and thrombosis and their inhibition reduces the risk of these disorders. There is still a need for platelet inhibitors affecting pathways that reduce thrombosis and atherosclerosis while leaving normal hemostasis relatively unaffected, thus reducing possible bleeding complications. Although combinations show progress in achieving these goals none of the present inhibitors completely fulfill these requirements. Collagen receptors offer attractive possibilities as alternative targets at early stages in platelet activation. Three major collagen receptors are assessed in this review; the alpha2beta1 integrin, responsible primarily for platelet adhesion to collagen; GPVI, the major signaling receptor for collagen; and GPIb-V-IX, which is indirectly a collagen receptor via von Willebrand factor. Several thrombosis models and experimental approaches suggest that all three are interesting targets and merit further investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many peptide hormone receptors are over-expressed in human cancer, permitting an in vivo targeting of tumors for diagnostic and therapeutic purposes. NPY receptors are novel and promising candidates in this field. Using in vitro receptor autoradiography, Y1 and Y2 receptors have been found to be expressed in breast carcinomas, adrenal gland and related tumors, renal cell carcinomas, and ovarian cancers in both tumor cells and tumor-associated blood vessels. Pathophysiologically, tumoral NPY receptors may be activated by endogenous NPY released from intratumoral nerve fibers or tumor cells themselves, and mediate NPY effects on tumor cell proliferation and tumoral blood supply. Clinically, tumoral NPY receptors may be targeted with NPY analogs coupled with adequate radionuclides or cytotoxic agents for a scintigraphic tumor imaging and/or tumor therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cu is an essential nutrient for man, but can be toxic if intakes are too high. In sensitive populations, marginal over- or under-exposure can have detrimental effects. Malnourished children, the elderly, and pregnant or lactating females may be susceptible for Cu deficiency. Cu status and exposure in the population can currently not be easily measured, as neither plasma Cu nor plasma cuproenzymes reflect Cu status precisely. Some blood markers (such as ceruloplasmin) indicate severe Cu depletion, but do not inversely respond to Cu excess, and are not suitable to indicate marginal states. A biomarker of Cu is needed that is sensitive to small changes in Cu status, and that responds to Cu excess as well as deficiency. Such a marker will aid in monitoring Cu status in large populations, and will help to avoid chronic health effects (for example, liver damage in chronic toxicity, osteoporosis, loss of collagen stability, or increased susceptibility to infections in deficiency). The advent of high-throughput technologies has enabled us to screen for potential biomarkers in the whole proteome of a cell, not excluding markers that have no direct link to Cu. Further, this screening allows us to search for a whole group of proteins that, in combination, reflect Cu status. The present review emphasises the need to find sensitive biomarkers for Cu, examines potential markers of Cu status already available, and discusses methods to identify a novel suite of biomarkers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The patient with abdominal aortic aneurysm (AAA) commonly is a nondiabetic, white man with a history of smoking. Moreover, AAA represents a leading cause of death in elderly men in Western countries. The purpose of this manuscript is to review current evidence as to the pathobiology of AAA as well as potential future drug targets to prevent progression of AAA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present study was to identify the molecular mechanism behind ventricular tachycardia in a patient with Brugada syndrome. Arrhythmias in patients with Brugada syndrome often occur during sleep. However, a 28-year-old man with no previously documented arrhythmia or syncope who experienced shortness of breath and chest pain during agitation is described. An electrocardiogram revealed monomorphic ventricular tachycardia; after he was converted to nodal rhythm, he spontaneously went into sinus rhythm, and showed classic Brugada changes with coved ST elevation in leads V(1) to V(2). Mutation analysis of SCN5A revealed a novel mutation, 3480 deletion T frame shift mutation, resulting in premature truncation of the protein. Heterologous expression of this truncated protein in human embryonic kidney 293 cells showed a markedly reduced protein expression level. By performing whole-cell patch clamp experiments using human embryonic kidney 293 cells transfected with the mutated SCN5A, no current could be recorded. Hence, the results suggest that the patient suffered from haploinsufficiency of Na(v)1.5, and that this mutation was the cause of his Brugada syndrome.