6 resultados para Culture alternative
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Cell therapies for articular cartilage defects rely on expanded chondrocytes. Mesenchymal stem cells (MSC) represent an alternative cell source should their hypertrophic differentiation pathway be prevented. Possible cellular instruction between human articular chondrocytes (HAC) and human bone marrow MSC was investigated in micromass pellets. HAC and MSC were mixed in different percentages or incubated individually in pellets for 3 or 6 weeks with and without TGF-beta1 and dexamethasone (±T±D) as chondrogenic factors. Collagen II, collagen X and S100 protein expression were assessed using immunohistochemistry. Proteoglycan synthesis was evaluated applying the Bern score and quantified using dimethylmethylene blue dye binding assay. Alkaline phosphatase activity (ALP) was detected on cryosections and soluble ALP measured in pellet supernatants. HAC alone generated hyaline-like discs, while MSC formed spheroid pellets in ±T±D. Co-cultured pellets changed from disc to spheroid shape with decreasing number of HAC, and displayed random cell distribution. In -T-D, HAC expressed S100, produced GAG and collagen II, and formed lacunae, while MSC did not produce any cartilage-specific proteins. Based on GAG, collagen type II and S100 expression chondrogenic differentiation occurred in -T-D MSC co-cultures. However, quantitative experimental GAG and DNA values did not differ from predicted values, suggesting only HAC contribution to GAG production. MSC produced cartilage-specific matrix only in +T+D but underwent hypertrophy in all pellet cultures. In summary, influence of HAC on MSC was restricted to early signs of neochondrogenesis. However, MSC did not contribute to the proteoglycan deposition, and HAC could not prevent hypertrophy of MSC induced by chondrogenic stimuli.
Resumo:
TNFalpha is known to stimulate the development and activity of osteoclasts and of bone resorption. The cytokine was found to mediate bone loss in conjunction with inflammatory diseases such as rheumatoid arthritis or chronic aseptic inflammation induced by wear particles from implants and was suggested to be a prerequisite for the loss of bone mass under estrogen deficiency. In the present study, the regulation of osteoclastogenesis by TNFalpha was investigated in co-cultures of osteoblasts and bone marrow or spleen cells and in cultures of bone marrow and spleen cells grown with CSF-1 and RANKL. Low concentrations of TNFalpha (1 ng/ml) caused a >90% decrease in the number of osteoclasts in co-cultures, but did not affect the development of osteoclasts from bone marrow cells. In cultures with p55TNFR(-/-) osteoblasts and wt BMC, the inhibitory effect was abrogated and TNFalpha induced an increase in the number of osteoclasts in a dose-dependent manner. Osteoblasts were found to release the inhibitory factor(s) into the culture supernatant after simultaneous treatment with 1,25(OH)(2)D(3) and TNFalpha, this activity, but not its release, being resistant to treatment with anti-TNFalpha antibodies. Dexamethasone blocked the secretion of the TNFalpha-dependent inhibitor by osteoblasts, while stimulating the development of osteoclasts. The data suggest that the effects of TNFalpha on the differentiation of osteoclast lineage cells and on bone metabolism may be more complex than hitherto assumed and that these effects may play a role in vivo during therapies for inflammatory diseases.
Resumo:
Steady-state hematopoiesis and hematopoietic transplantation rely on the unique potential of stem cells to undergo both self-renewal and multilineage differentiation. Fetal liver (FL) represents a promising alternative source of hematopoietic stem cells (HSCs), but limited by the total cell number obtained in a typical harvest. We reported that human FL nonobese diabetic/severe combined immunodeficient (NOD/SCID) repopulating cells (SRCs) could be expanded under simple stroma-free culture conditions. Here, we sought to further characterize FL HSC/SRCs phenotypically and functionally before and following culture. Unexpanded or cultured FL cell suspensions were separated into various subpopulations. These were tested for long-term culture potential and for in vivo repopulating function following transplantation into NOD/SCID mice. We found that upon culture of human FL cells, a tight association between classical stem cell phenotypes, such as CD34(+) /CD38(-) and/or side population, and NOD/SCID repopulating function was lost, as observed with other sources. Although SRC activity before and following culture consistently correlated with the presence of a CD34(+) cell population, we provide evidence that, contrary to umbilical cord blood and adult sources, stem cells present in both CD34(+) and CD34(-) FL populations can sustain long-term hematopoietic cultures. Furthermore, upon additional culture, CD34-depleted cell suspensions, devoid of SRCs, regenerated a population of CD34(+) cells possessing SRC function. Our studies suggest that compared to neonatal and adult sources, the phenotypical characteristics of putative human FL HSCs may be less strictly defined, and reinforce the accumulated evidence that human FL represents a unique, valuable alternative and highly proliferative source of HSCs for clinical applications.
Resumo:
INTRODUCTION: The incidence of bloodstream infection (BSI) in extracorporeal life support (ECLS) is reported between 0.9 and 19.5%. In January 2006, the Extracorporeal Life Support Organization (ELSO) reported an overall incidence of 8.78% distributed as follows: respiratory: 6.5% (neonatal), 20.8% (pediatric); cardiac: 8.2% (neonatal) and 12.6% (pediatric). METHOD: At BC Children's Hospital (BCCH) daily surveillance blood cultures (BC) are performed and antibiotic prophylaxis is not routinely recommended. Positive BC (BC+) were reviewed, including resistance profiles, collection time of BC+, time to positivity and mortality. White blood cell count, absolute neutrophile count, immature/total ratio, platelet count, fibrinogen and lactate were analyzed 48, 24 and 0 h prior to BSI. A univariate linear regression analysis was performed. RESULTS: From 1999 to 2005, 89 patients underwent ECLS. After exclusion, 84 patients were reviewed. The attack rate was 22.6% (19 BSI) and 13.1% after exclusion of coagulase-negative staphylococci (n = 8). BSI patients were significantly longer on ECLS (157 h) compared to the no-BSI group (127 h, 95% CI: 106-148). Six BSI patients died on ECLS (35%; 4 congenital diaphragmatic hernias, 1 hypoplastic left heart syndrome and 1 after a tetralogy repair). BCCH survival on ECLS was 71 and 58% at discharge, which is comparable to previous reports. No patient died primarily because of BSI. No BSI predictor was identified, although lactate may show a decreasing trend before BSI (P = 0.102). CONCLUSION: Compared with ELSO, the studied BSI incidence was higher with a comparable mortality. We speculate that our BSI rate is explained by underreporting of "contaminants" in the literature, the use of broad-spectrum antibiotic prophylaxis and a higher yield with daily monitoring BC. We support daily surveillance blood cultures as an alternative to antibiotic prophylaxis in the management of patients on ECLS.
Resumo:
Neospora caninum is an apicomplexan parasite which has emerged as an important cause of bovine abortion worldwide. Abortion is usually triggered by reactivation of dormant bradyzoites during pregnancy and subsequent congenital infection of the foetus, where the central nervous system appears to be most frequently affected. We here report on an organotypic tissue culture model for Neospora infection which can be used to study certain aspects of the cerebral phase of neosporosis within the context of a three-dimensionally organised neuronal network. Organotypic slice cultures of rat cortical tissue were infected with N. caninum tachyzoites, and the kinetics of parasite proliferation, as well as the proliferation-inhibitory effect of interferon-gamma (IFN-gamma), were monitored by either immunofluorescence, transmission electron microscopy, and a quantitative PCR-assay using the LightCycler instrument, respectively. In addition, the neuronal cytoskeletal elements, namely glial acidic protein filaments as well as actin microfilament bundles were shown to be largely colocalising with the pseudocyst periphery. This organotypic culture model for cerebral neosporosis provides a system, which is useful to study the proliferation, ultrastructural characteristics, development, and the interactions of N. caninum within the context of neuronal tissue, which at the same time can be modulated and influenced under controlled conditions, and will be useful in the future to gain more information on the cerebral phase of neosporosis.